
Chapter 3

Test automation

Brittany Johnson
SWE 437

Adapted from slides by Paul Ammann & Jeff Offutt

What is test automation?

Using software to control the testing
- Setting up test preconditions
- Test execution
- Comparing actual results to test results
- Test reporting

Reduces cost
Reduces human error
Reduces variance in test quality from different individuals
Significantly reduces the cost of regression testing

2

Software testability (3.1)

The degree to which a system or component facilitates the
establishment of test criteria and the performance of tests to

determine whether those criteria have been met.

How hard is it to find faults in the software
Testability is dominated by two practical problems:

- How to observe the results of test execution
- How to provide test values to the software

3

Observability and controllability

Observability
How easy it is to observe the behavior of a program in term

of its outputs, effects on the environment, and other hardware
and software components

- Software that affects hardware devices, databases, or remote files have
low observability

Controllability
How easy it is to provide a program with the needed inputs, in

terms of values, operations, and behaviors
- Easy to control software with inputs from keyboards
- Inputs from hardware sensors or distributed software is harder

Data abstraction reduces controllability and observability
4

Components of a test case (3.2)

A test case is a multipart artifact with a
definite structure

Test case values

The input values needed to complete an
execution of the software under test

Expected results
The result that will be produced by the test

if the software behaves as expected
- A test oracle uses expected results to decide

whether a test passed or failed
5

Affecting controllability and
observability

Prefix values

Inputs to put the software into the
correct state to receive the test case

values

Postfix values
Inputs that must be sent to the software

after the test case values

6

SOFTWARE

Inputs SOFTWARE

inputs

test
cases

Putting tests together

Test case

The test case values, prefix values, postfix values, and
expected results necessary for a complete execution and

evaluation of the software under test

Test set (or suite)
A set of test cases

Executable test script
A test case that is prepared in a form to be executed

automatically on the test software and produce a report
7

Test automation framework (3.3)

A set of assumptions, concepts, and tools that
support test automation

8

JUnit test framework

Junit can be used to test…
- …an entire object
- …part of an object – a method or some interacting methods
- …interaction between several objects

It is primarily intended for unit and integration testing, not systems
testing
Each test is embedded into one test method
A test class contains one or more test methods
Test classes include:
- A collection of test methods
- Methods to set up the state before and update the state after each

test and before and after all tests
Get started at junit.org

9

JUnit test fixtures

A test fixture is the state of the test
- Objects and variables that are used by more than one test
- Initializations (prefix values)
- Reset values (postfix values)

Different tests can use the objects without sharing the state
Objects used in test fixtures should be declared as instance
variables
They should be initialized in a @Before method
Can be deallocated or reset in an @After method

10

Simple JUnit example

11

public class Calc
{

static public int add(int a, int b)
{

return a + b;
}

}
import org.junit.Test;
import static org.junit.Assert.*;

public class CalcTest
{

@Test public void testAdd()
{

assertTrue(“testAdd incorrect”,
5 == Calc.add(2, 3));

}
}

Test
values

Expected
output

Printed if
assert fails

Testing the Min class

12

Testing the Min class

13

In-class exercise

Write test inputs for the Min class

Be sure to include expected outputs

Once you have enough tests, write one in JUnit.
If you’re not sure how, ask for help.

If you have written JUnit tests, help somebody who has not.

You do not need to execute the tests.
14

MinTest class
Standard imports for all
JUnit classes:

Test fixture and pre-test
setup method (prefix):

Post test teardown
method (postfix):

15

import static org.junit.Assert.*;
import org.junit.*;
import java.util.*;

private List<String> list; // Test fixture

// Set up - Called before every test method.
@Before
public void setUp()
{

list = new ArrayList<String>();
}

// Tear down - Called after every test method.
@After
public void tearDown()
{

list = null; // redundant in this example
}

Min test cases: NullPointerException

16

@Test public void testForNullList()
{

list = null;
try {

Min.min(list);
} catch (NullPointerException e) {

return;
}
fail(“NullPointerException

expected”);
}

@Test (expected =
NullPointerException.class)
public void testForNullElement()
{

list.add(null);
list.add("cat");
Min.min(list);

}
This NullPointerException
test uses the fail assertion

This NullPointerException test
decorates the @Test
annotation with the class of the
exception

This NullPointerException
test catches an easily
overlooked special case

@Test(expected =
NullPointerException.class)
public void testForSoloNullElement()
{

list.add(null);
Min.min(list);

}

More exception test cases for Min

17

@Test(expected =
ClassCastException.class)
@SuppressWarnings("unchecked")
public void
testMutuallyIncomparable()
{

List list = new ArrayList();
list.add("cat");
list.add("dog");
list.add(1);
Min.min(list);

}
@Test(expected =
IllegalArgumentException.class)
public void testEmptyList()
{

Min.min(list);
}

Note that Java
generics don’t
prevent clients
from using raw
types!

Special case: Testing for the
empty list

Remaining test cases for Min

18

Finally! A couple of
“Happy Path” tests

@Test
public void testSingleElement()
{

list.add("cat");
Object obj = Min.min(list);
assertTrue("Single Element List", obj.equals("cat"));

}

@Test
public void testDoubleElement()
{

list.add("dog");
list.add("cat");
Object obj = Min.min(list);
assertTrue("Double Element List", obj.equals("cat"));

}

Summary: Seven tests for Min

Five tests for exceptions
1. null list
2. null element with multiple elements
3. null single element
4. incomparable types
5. empty elements

Two without exceptions
1. single element
2. two elements

19

JUnit resources

Some JUnit tutorials
- http://open.ncsu.edu/se/tutorials/junit/

(Laurie Williams, Dright Ho, and Sarah Heckman)
- http://www.laliluna.de/eclipse-junit-testing-tutorial.html

(Sascha Wolski and Sebastian Hennebrueder)
- http://www.diasparsoftware.com/template.php?content=jUnitStarterGuide

(Diaspar software)
- http://www.clarkware.com/articles/JUnitPrimer.html

(Clarkware consulting)

JUnit: download and documentation
- http://www.junit.org

20

http://open.ncsu.edu/se/tutorials/junit/
http://www.laliluna.de/eclipse-junit-testing-tutorial.html
http://www.diasparsoftware.com/template.php?content=jUnitStarterGuide
http://www.clarkware.com/articles/JUnitPrimer.html
http://www.junit.org/

Summary

The only way to make testing efficient as well as effective is to
automate as much as possible

Test frameworks provide very simple ways to automate our
tests

It is no “silver bullet” however…it does not solve the hard
problem of testing:

What test values to use?

This is test design – the purpose of test criteria
21

