
Intro to Software Testing
chapter 8.2

Syntactic Logic Coverage
Disjunctive Normal Form (DNF)

Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637
Adapted from slides by Jeff Offutt and Bob Kurtz

https://go.gmu.edu/SWE637

Logic Coverage

2

Structures for
Modeling Software

Input Space Graphs

Source

Design

Specs

Use Cases

Logic

Source

FSMs

Specs

DNF

Syntax

Source

Models

Integration

Input

Applied to Applied to Applied to

What is DNF?
Disjunctive Normal Form (DNF) is a common representation for Boolean functions

Slightly different notation and terminology
Literal: a clause or the negation of a clause: 𝑎, "𝑎
Term: is a set of literals connected by logical and, represented by adjacency, for example:

𝒂 ∧ 𝒃 becomes 𝒂𝒃
¬𝒂 ∧ 𝒃 becomes %𝒂𝒃
¬𝒂 ∧ ¬𝒃 becomes 𝒂𝒃

Terms are also called implicants, because if a single term is true, it implies that the entire
predicate is true
Predicate: a set of terms connected by or, which is represented by +, for example:

𝒂 ∨ 𝒃 becomes 𝒂 + 𝒃
3

DNF Fault Classes
There are 9 types of syntactic faults on DNF predicates; we want criteria that are
guaranteed to find them.

4

Fault Class
Intended Expression Faulty

Expression

ENF: expression negation fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂𝒃 + 𝒄
TNF: term negation fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂𝒃 + 𝒄
TOF: term omission fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂𝒃
LNF: literal negation fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂'𝒃 + 𝒄
LRF: literal reference fault 𝒇 = 𝒂𝒃 + 𝒃𝒄𝒅 𝒇 = 𝒂𝒅 + 𝒃𝒄𝒅
LOF: literal omission fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂 + 𝒄
LIF: literal insertion fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂𝒃 + 𝒃𝒄
ORF+: operator reference fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂𝒃𝒄
ORF*: operator reference fault 𝒇 = 𝒂𝒃 + 𝒄 𝒇 = 𝒂 + 𝒃 + 𝒄

DNF Fault Class Subsumption

5

LIF: Literal Insertion
Fault

ENF: Expression
Negation Fault

TNF: Term Negation
Fault

LNF: Literal Negation
Fault

LRF: Literal Reference
Fault

LOF: Literal Omission
Fault

ORF+: Operator
Reference Fault

ORF*: Operator
Reference Fault

TOF: Term Omission
Fault

Together, these
subsume
all others

Subsumed by all others

If we can find LIF and
LOF faults, we will find

all faults

Implicant Coverage
An obvious coverage thought is to make each implicant (term) evaluate to true

This only tests true cases for the predicate 𝒇, so we include DNF negation of the entire
predicate 𝒇

Examples: 𝑓 = 𝑎𝑏 + 𝑏 ̅𝑐, ̅𝑓 =)𝑏 +)𝑎𝑐
Implicants: {𝑎𝑏, 𝑏 ̅𝑐, '𝑏, '𝑎𝑐}

Possible test set: { TTF, FFT }
IC is a relatively weak criterion, not guaranteed to find any of the DNF fault classes

6

Implicant Coverage (IC) – Given DNF representation of a
predicate 𝒇 and its negation '𝒇, for each implicant in 𝒇 and '𝒇, TR
contains the requirement that the implicant evaluate to true.

DE
FI

N
IT

IO
N

Improving on Implicant Coverage
Additional definitions:

Proper subterm: a term with one or more clauses removed
𝒂𝒃𝒄 has proper subterms, 𝒂, 𝒃, 𝒄, 𝒂𝒃, 𝒂𝒄, 𝒃𝒄

Prime implicant: an implicant such that no proper subterm is an implicant
Given 𝒇 = 𝒂𝒃 + 𝒂.𝒃𝒄:
𝒂𝒃 is a prime implicant, but 𝒂.𝒃𝒄 is not, because proper subterm𝒂𝒄 is an implicant (because the
predicate can be simplified to 𝒇 = 𝒂𝒃 + 𝒂𝒄, and we’ll soon see how to determine that)

Redundant implicant: an implicant that can be removed without changing the value of the
predicate

Given 𝒇 = 𝒂𝒃 + 𝒂𝒄 + 𝒃'𝒄, implicant 𝒂𝒃 is redundant because the predicate can be simplified to
𝒂𝒄 + 𝒃'𝒄 (again, we’ll soon see how to determine that)

7

00 01 11 10

0

1

ab

c

Simplifying Predicates
We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate 𝒇 = 𝒂𝒃 + 𝒂𝒄 + 𝒃)𝒄

8

Values use Grey code
ordering (rather than binary
counting) where only one

truth value changes at a time
across columns or down rows.

Populate the truth table where
true values are listed as “t”;

false values are (by
convention) simply left blank.

Group clauses into pairs (or
one pair and one single
clause) and populate the

possible values of the
clauses.

00 01 11 10

0

1

ab

c

Simplifying Predicates
We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate 𝒇 = 𝒂𝒃 + 𝒂𝒄 + 𝒃)𝒄

9

Values use Grey code
ordering (rather than binary
counting) where only one

truth value changes at a time
across columns or down rows.

Populate the truth table where
true values are listed as “t”;

false values are (by
convention) simply left blank.

Group clauses into pairs (or
one pair and one single
clause) and populate the

possible values of the
clauses.

t

t

00 01 11 10

0

1

ab

c

Simplifying Predicates
We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate 𝒇 = 𝒂𝒃 + 𝒂𝒄 + 𝒃)𝒄

10

Values use Grey code
ordering (rather than binary
counting) where only one

truth value changes at a time
across columns or down rows.

Populate the truth table where
true values are listed as “t”;

false values are (by
convention) simply left blank.

Group clauses into pairs (or
one pair and one single
clause) and populate the

possible values of the
clauses.

t

t t

Simplifying Predicates
We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate 𝒇 = 𝒂𝒃 + 𝒂𝒄 + 𝒃)𝒄

11

Values use Grey code
ordering (rather than binary
counting) where only one

truth value changes at a time
across columns or down rows.

Populate the truth table where
true values are listed as “t”;

false values are (by
convention) simply left blank.

Group clauses into pairs (or
one pair and one single
clause) and populate the

possible values of the
clauses.

t

t

t

t

00 01 11 10

0

1

ab

c

Simplifying Predicates

12

t

t

t

t

00 01 11 10

0

1

ab

c

We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate 𝒇 = 𝒂𝒃 + 𝒂𝒄 + 𝒃)𝒄
Simplifies to 𝒇 = 𝒂𝒄 + 𝒃)𝒄

Simplifying Predicates

13

t

t

t

t

00 01 11 10

0

1

ab

c

Select maximal rectangles
in the table, sized 2m by 2n

(1x1, 1x2, 2x2, 2x4, 4x4,
4x8, etc.); it’s okay if they

overlap

We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate 𝒇 = 𝒂𝒃 + 𝒂𝒄 + 𝒃)𝒄
Simplifies to 𝒇 = 𝒂𝒄 + 𝒃)𝒄

Simplifying Predicates

14

t

t

t

t

00 01 11 10

0

1

ab

c

Select maximal rectangles
in the table, sized 2m by 2n

(1x1, 1x2, 2x2, 2x4, 4x4,
4x8, etc.); it’s okay if they

overlap

We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate 𝒇 = 𝒂𝒃 + 𝒂𝒄 + 𝒃)𝒄
Simplifies to 𝒇 = 𝒂𝒄 + 𝒃)𝒄

K-Maps are Toroidal

15

K-Maps are a torus, not a plane
The bottom row wraps around to the top row
The right column wraps around to the left column

By Jochen Burghardt - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=28286441

K-Maps are Toroidal

16

Given the predicate 𝒇 = 𝒃𝒅

Draw the K-map

t t

00 01 11 10

00

01

ab

cd

t t

11

10

K-Maps are Toroidal

17

Given the predicate 𝒇 = 𝒃𝒅

Draw the K-map

t t

00 01 11 10

00

01

ab

cd

t t

11

10

These 4 true values are a
single 2x2 rectangle!

Prime Implicants

18

Given the predicate 𝒇 = 𝒂𝒃𝒄 + 𝒂𝒃*𝒅 + *𝒂𝒃𝒄𝒅 + 𝒂*𝒃𝒄*𝒅 + 𝒂𝒄𝒅

Draw the K-map

t t

00 01 11 10

00

01

ab

cd
t t

t t

11

10

Prime Implicants

19

Given the predicate 𝒇 = 𝒂𝒃𝒄 + 𝒂𝒃*𝒅 + *𝒂𝒃𝒄𝒅 + 𝒂*𝒃𝒄*𝒅 + 𝒂𝒄𝒅

Draw the K-map

t t

00 01 11 10

00

01

ab

cd
t t

t t

11

10

Not prime implicants:
𝒂𝒃#𝒅 (part of 𝒂#𝒅)
#𝒂𝒃𝒄𝒅 (part of 𝒃𝒄𝒅)
𝒂#𝒃𝒄#𝒅 (part of 𝒂#𝒅)
𝒂𝒄𝒅 (part of 𝒂#𝒅)

All these have proper subterms that are implicants

Minimal DNF representation: 𝒇 = 𝒂.𝒅 + 𝒃𝒄𝒅

Minimal Representation

20

A minimal DNF representation is one with only prime, non-redundant implicants
Not minimal: 𝒇 = 𝒂𝒃𝒄 + 𝒂𝒃.𝒅 + .𝒂𝒃𝒄𝒅 + 𝒂.𝒃𝒄.𝒅 + 𝒂𝒄𝒅

Minimal (simplified) equivalent from previous slide: 𝒇 = 𝒂*𝒅 + 𝒃𝒄𝒅

t t

00 01 11 10

00

01

ab

cd
t t

t t

11

10

Determination

21

Given predicate 𝒇 = 𝒃 + 𝒂𝒄 + 𝒂𝒄, suppose we want to identify when 𝒃 determines 𝒇

Draw K-map

t t t
t t t

00 01 11 10

0

1

ab

c

Determination

22

Given predicate 𝒇 = 𝒃 + 𝒂𝒄 + 𝒂𝒄, suppose we want to identify when 𝒃 determines 𝒇

Draw K-map

t t t
t t t

00 01 11 10

0

1

ab

c

If two cells adjacent to the
boundary have different

values for f, then b determines
f for those two cells.

Identify the boundaries
where b changes value.

𝒃 determines 𝒇 for 𝒂'𝒄 + .𝒂𝒄

Predicate Negation

23

Given predicate 𝒇 = 𝒂𝒃 + 𝒃𝒄, suppose we want to negate 𝒇

t

t t

00 01 11 10

0

1

ab

c

Draw the K-map for
f.

t t t

t t

00 01 11 10

0

1

ab

c

Negate all the cells in
the K-map.

Write down the result: '𝒇 = .𝒃 + 𝒂𝒄

True and False Points

24

Given 𝒇 = 𝒂𝒃 + 𝒄𝒅

t
t

00 01 11 10

00

01

ab

cd
t t t t

t

11

10

True points are those cells in
the K-map where the value of the
predicate is true

False points are those where
the value is false

Unique True Points

25

A unique true point (UTP) with respect to a given implicant is an assignment
of truth values such that

The given implicant is true
All other implicants are false

Thus a unique true point test focuses on only one implicant

Unique True Points (UTPs)

26

Given 𝒇 = 𝒂𝒃 + 𝒄𝒅

t

t

00 01 11 10

00

01

ab

cd
t t t t

t

11

10

Unique true points for 𝒂𝒃
TTFF, TTFT, TTTF

Unique true points for 𝒄𝒅
FFTT, FTTT, TFTT

TTTT is a true point, but not a
unique true point

Multiple Unique True Point Coverage

27

A minimal representation guarantees the existence of at least one unique true point for
each implicant.

Multiple Unique True Point Coverage (MUTP) – Given a
minimal DNF representation of a predicate f, for each implicant i,
choose unique true points (UTPs) such that clauses not in i are true
and false.

DE
FI

N
IT

IO
N

Multiple Unique True Points

28

Given 𝒇 = 𝒂𝒃 + 𝒄𝒅
Choose unique true points for each implicant such that literals not in the implicant take on
values true and false

t

t

00 01 11 10

00

01

ab

cd
t t t t

t

11

10

For implicant 𝒂𝒃, choose
TTFT and TTTF

For implicant 𝒄𝒅, choose
FTTT and TFTT

MUTP test set:
{ TTFT, TTTF, FTTT, TFTT }

MUTP Infeasibility

29

Given the predicate 𝒇 = 𝒂𝒃 + 𝒃)𝒄
Implicants are { 𝒂𝒃, 𝒃'𝒄 }

Both implicants are prime
Neither implicant is redundant

t t
t

00 01 11 10

0

1

ab

c

MUTP Infeasibility

30

Unique true points required by MUTP
𝒂𝒃: {TTT} causes 𝒂𝒃 to be true and 𝒃'𝒄 to be false

But there’s no way to also make clause c both true and false while keeping the implicants true and false as required by MUTP, so
MUTP is infeasible

𝒃'𝒄: {FTF} causes 𝒂𝒃 to be false and 𝒃'𝒄 to be true
But there’s no way to also make clause a both true and false while keeping the implicants true and false as required by MUTP, so
MUTP is infeasible

t t
t

00 01 11 10

0

1

ab

c

MUTP Fault Detection

31

LIF: Literal Insertion
Fault

ENF: Expression
Negation Fault

TNF: Term Negation
Fault

LNF: Literal Negation
Fault

LRF: Literal Reference
Fault

LOF: Literal Omission
Fault

ORF+: Operator
Reference Fault

ORF*: Operator
Reference Fault

TOF: Term Omission
Fault

When feasible, MUTP
finds all literal insertion

faults (LIFs)

Now we need a way to find all
literal omission faults (LOFs)

and/or operator reference
faults (ORF*s)

Near False Points and CUTPNFP

32

A near false point (NFP) with respect to a clause c in implicant i is an assignment of
truth values such that f is false, but if c is negated and all other clauses are left unchanged,
then i and thus f evaluates to true

At a near false point, c determines f

Corresponding Unique True Point and Near False Point
Pair Coverage (CUTPNFP) – Given a minimal DNF
representation of a predicate f, for each clause c in each implicant i,
TR contains a unique true point for i and a near false point for c
such that the points differ only in the truth value of c.DE

FI
N

IT
IO

N

CUTPNFP Example

33

Given 𝒇 = 𝒂𝒃 + 𝒄𝒅
For each literal c in each implicant i, choose a unique true point for i and a near false point for c
in i such that only the value of c changes

t

t

00 01 11 10

00

01

ab

cd
t t t t

t

11

10

For clause a in ab, choose UTP and NFP
TTFF and FTFF, or
TTFT and FTFT, or
TTTF and FTTF

For clause b in ab, choose UTP and NFP
TTFF and TFFF, or
TTFT and TFFT, or
TTTF and TFTF

We don’t have to pick the same UTP for a and b,
but we can to reduce test cases.

CUTPNFP Example (cont’d)

34

Given 𝒇 = 𝒂𝒃 + 𝒄𝒅
For each literal c in each implicant i, choose a unique true point for i and a near false point for c
in i such that only the value of c changes

t

t

00 01 11 10

00

01

ab

cd
t t t t

t

11

10

For clause c in cd, choose UTP and NFP
FFTT and FFFT, or
FTTT and FTFT, or
TFTT and TFFT

For clause d in cd, choose UTP and NFP
FFTT and FFTF, or
FTTT and FTTF, or
TFTT and TFTF

We don’t have to pick the same UTP for c and d,
but can to reduce test cases.

t
t

00 01 11 10

00

01

ab

cd
t t t t

t

11

10

CUTPNFP Example (cont’d)

35

Given 𝒇 = 𝒂𝒃 + 𝒄𝒅
For each literal c in each implicant i, choose a unique true point for i and a near false point for c
in i such that only the value of c changes

For clause a in ab, choose UTP and NFP
TTFT and FTFT

For clause b in ab, choose UTP and NFP
TTFT and TFFT

For clause c in cd, choose UTP and NFP
FTTT and FTFT

For clause d in cd, choose UTP and NFP
FTTT and FTTF

TR = { TTFT, FTFT, TFFT, FTTT, FTTF }

CUTPNFP Fault Detection

36

LIF: Literal Insertion
Fault

ENF: Expression
Negation Fault

TNF: Term Negation
Fault

LNF: Literal Negation
Fault

LRF: Literal Reference
Fault

LOF: Literal Omission
Fault

ORF+: Operator
Reference Fault

ORF*: Operator
Reference Fault

TOF: Term Omission
Fault

When feasible,
CUTNPFP finds all

literal omission faults
(LOFs)

Is there a way to increase the
feasibility so that more

predicates can be adequately
tested?

Multiple Near False Point Coverage

37

We saw earlier that MUTP can easily be infeasible in its entirety, and the same is
true of CUTPNFP.

Multiple Near False Point Coverage (MNFP) – Given a
minimal DNF representation of a predicate f, for each clause c in
each implicant i, TR contains near false points for c such that the
clauses not in i take on values true and false.DE

FI
N

IT
IO

N

MNFP Example

38

Given 𝒇 = 𝒂𝒃 + 𝒄𝒅
For each literal c in each implicant i, choose near false points such that the clauses not in i take
on values true and false.

t
t

00 01 11 10

00

01

ab

cd
t t t t

t

11

10

For clause a in ab, choose NFP FTFT and
NFP FTTF
For b in ab, choose TFFT and TFTF
For c in cd, choose FTFT and TFFT
For d in cd, choose FTTF and TFTF

MNFP test set:
{ TFTF, TFFT, FTTF, TFTF }

MUMCUT

39

We can combine the previous three criteria (MUTP, CUTPNFP, and MNFP)

This combination detects all fault classes even when one (or more) of the
constituent criteria are infeasible

However, this is a very expensive criterion

MUTP, MNFP, and CUTPNFP Coverage (MUMCUT) – Given
a minimal DNF representation of a predicate f, apply MUTP,
CUTPNFP, and MNFP.DE

FI
N

IT
IO

N

Minimal-MUMCUT Criterion

40

Minimal-MUMCUT uses
feasibility analysis, and adds
CUTPNFP and MNFP only
when necessary

Guarantees detection of LIF,
LRF, and LOF fault types, thus
covers all 9 fault types

For each term

MUTP
Feasible?

For each literal in
term

Test set = MUTP
+ MNFP

CUTPNFP
Feasible?

Test set = MUTP
+ CUTPNFP

Test set = MUTP
+ MNFP

YES

NO

NO

YES

