Intro to Software Testing
chapter 8.2
Syntactic Logic Coverage
Disjunctive Normal Form (DNF)
Dr. Brittany Johnson-Matthews
(Dr. Bforshort)
$\frac{\text { https://go.gmu.edu/SWE637 }}{\text { Adapted from slides by Jeff Offutt and Bob Kurtz }}$

Logic Coverage

What is DNF?

Disjunctive Normal Form (DNF) is a common representation for Boolean functions Slightly different notation and terminology
Literal: a clause or the negation of a clause: a, \bar{a}
Term: is a set of literals connected by logical and, represented by adjacency, for example:
$\boldsymbol{a} \wedge \boldsymbol{b}$ becomes $\boldsymbol{a b}$
$\neg \boldsymbol{a} \wedge \boldsymbol{b}$ becomes $\overline{\boldsymbol{a}} \boldsymbol{b}$
$\neg \boldsymbol{a} \wedge \neg \boldsymbol{b}$ becomes $\overline{\boldsymbol{a} \boldsymbol{b}}$
Terms are also called implicants, because if a single term is true, it implies that the entire predicate is true
Predicate: a set of terms connected by or, which is represented by + , for example: $\boldsymbol{a} \vee \boldsymbol{b}$ becomes $\boldsymbol{a}+\boldsymbol{b}$

DNF Fault Classes

There are 9 types of syntactic faults on DNF predicates; we want criteria that are guaranteed to find them.

Fault Class	Intended Expression	Faulty Expression
ENF: expression negation fault	$\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{c}$	$\boldsymbol{f}=\overline{\boldsymbol{a} \boldsymbol{b}+\boldsymbol{c}}$
TNF: term negation fault	$\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{c}$	$\boldsymbol{f}=\overline{\boldsymbol{a} \boldsymbol{b}}+\boldsymbol{c}$
TOF: term omission fault	$\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{c}$	$\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}$
LNF: literal negation fault	$\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{c}$	$\boldsymbol{f}=\boldsymbol{a} \overline{\boldsymbol{b}}+\boldsymbol{c}$
LRF: literal reference fault	$\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{b c \boldsymbol { c }}$	$\boldsymbol{f}=\boldsymbol{a d}+\boldsymbol{b} \boldsymbol{c} \boldsymbol{d}$
LOF: literal omission fault	$\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{c}$	$\boldsymbol{f}=\boldsymbol{a}+\boldsymbol{c}$
LIF: literal insertion fault	$\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{c}$	$\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{b} \boldsymbol{c}$
ORF + : operator reference fault	$\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{c}$	$\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b} \boldsymbol{c}$
ORF: operator reference fault	$\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{c}$	$\boldsymbol{f}=\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}$

DNF Fault Class Subsumption

Implicant Coverage

An obvious coverage thought is to make each implicant (term) evaluate to true This only tests true cases for the predicate \boldsymbol{f}, so we include DNF negation of the entire predicate \boldsymbol{f}

Examples: $f=a b+b \bar{c}, \bar{f}=\bar{b}+\bar{a} c$
Implicants: $\{a b, b \bar{c}, \bar{b}, \bar{a} c\}$
Possible test set: $\{$ TTF, FFT \}
IC is a relatively weak criterion, not guaranteed to find any of the DNF fault classes

Improving on Implicant Coverage

 Additional definitions:Proper subterm: a term with one or more clauses removed
$\boldsymbol{a b c}$ has proper subterms, $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{a b}, \boldsymbol{a c}, \boldsymbol{b c}$
Prime implicant: an implicant such that no proper subterm is an implicant
Given $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{a} \overline{\boldsymbol{b}} \boldsymbol{c}$:
$\boldsymbol{a} \boldsymbol{b}$ is a prime implicant, but $\boldsymbol{a} \overline{\boldsymbol{b}} \boldsymbol{c}$ is not, because proper subterm $\boldsymbol{a c}$ is an implicant (because the predicate can be simplified to $\boldsymbol{f}=\boldsymbol{a b}+\boldsymbol{a c}$, and we'll soon see how to determine that)
Redundant implicant: an implicant that can be removed without changing the value of the
predicate
Given $\boldsymbol{f}=\boldsymbol{a b}+\boldsymbol{a c}+\boldsymbol{b} \overline{\boldsymbol{c}}$, implicant $\boldsymbol{a b}$ is redundant because the predicate can be simplified to $\boldsymbol{a c}+\boldsymbol{b} \overline{\boldsymbol{c}}$ (again, we'll soon see how to determine that)

Simplifying Predicates

We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{a} \boldsymbol{c}+\boldsymbol{b} \overline{\boldsymbol{c}}$

Simplifying Predicates

We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{a} \boldsymbol{c}+\boldsymbol{b} \overline{\boldsymbol{c}}$

Simplifying Predicates

We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{a c}+\boldsymbol{b} \overline{\boldsymbol{c}}$

Simplifying Predicates

We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{a} \boldsymbol{c}+\boldsymbol{b} \overline{\boldsymbol{c}}$

Simplifying Predicates

We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{a c}+\boldsymbol{b} \overline{\boldsymbol{c}}$
Simplifies to $\boldsymbol{f}=\boldsymbol{a c}+\boldsymbol{b} \overline{\boldsymbol{c}}$

Simplifying Predicates

We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{a c}+\boldsymbol{b} \overline{\boldsymbol{c}}$
Simplifies to $\boldsymbol{f}=\boldsymbol{a c}+\boldsymbol{b} \overline{\boldsymbol{c}}$

Simplifying Predicates

We can use Karnaugh maps (K-maps) to simplify DNF predicates

Given predicate $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{a c}+\boldsymbol{b} \overline{\boldsymbol{c}}$
Simplifies to $\boldsymbol{f}=\boldsymbol{a c}+\boldsymbol{b} \overline{\boldsymbol{c}}$

K-Maps are Toroidal

K-Maps are a torus, not a plane
The bottom row wraps around to the top row
The right column wraps around to the left col umn

By Jochen Burghardt - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=28286441

K-Maps are Toroidal

Given the predicate $\boldsymbol{f}=\overline{\boldsymbol{b} \boldsymbol{d}}$

Draw the K-map

K-Maps are Toroidal

Given the predicate $\boldsymbol{f}=\overline{\boldsymbol{b d}}$

Draw the K-map

Prime Implicants

Given the predicate $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b} \boldsymbol{c}+\boldsymbol{a} \boldsymbol{b} \overline{\boldsymbol{d}}+\overline{\boldsymbol{a}} \boldsymbol{b} \boldsymbol{c} \boldsymbol{d}+\boldsymbol{a} \overline{\boldsymbol{b}} \boldsymbol{c} \overline{\boldsymbol{d}}+\boldsymbol{a} \overline{\boldsymbol{c} \boldsymbol{d}}$

Draw the K-map

Prime Implicants

Given the predicate $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b} \boldsymbol{c}+\boldsymbol{a} \boldsymbol{b} \overline{\boldsymbol{d}}+\overline{\boldsymbol{a}} \boldsymbol{b} \boldsymbol{c} \boldsymbol{d}+\boldsymbol{a} \overline{\boldsymbol{b}} \boldsymbol{c} \overline{\boldsymbol{d}}+\boldsymbol{a} \overline{\boldsymbol{c} \boldsymbol{d}}$

Draw the K-map

Not prime implicants:
$\boldsymbol{a b} \overline{\boldsymbol{d}}$ (part $\quad \boldsymbol{a} \overline{\boldsymbol{d}}$ $\overline{\boldsymbol{a}} \boldsymbol{b} \boldsymbol{c} \boldsymbol{d}$ (part of $\boldsymbol{b c d}$ $\boldsymbol{a} \overline{\boldsymbol{b}} \boldsymbol{c} \overline{\boldsymbol{d}}$ (part of $\boldsymbol{a} \overline{\boldsymbol{d}}$) $\boldsymbol{a} \overline{\boldsymbol{c} \boldsymbol{d}}$ (part of $\boldsymbol{a} \overline{\boldsymbol{d}}$)
All these have proper subterms that are implicants

Minimal Representation

minimal DNF representation is one with only prime, non-redundant implicants
Not minimal: $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b} \boldsymbol{c}+\boldsymbol{a} \boldsymbol{b} \overline{\boldsymbol{d}}+\overline{\boldsymbol{a}} \boldsymbol{b} \boldsymbol{c} \boldsymbol{d}+\boldsymbol{a} \overline{\boldsymbol{b}} \boldsymbol{c} \overline{\boldsymbol{d}}+\boldsymbol{a} \overline{\boldsymbol{c} \boldsymbol{d}}$
Minimal (simplified) equivalent from previous slide: $\boldsymbol{f}=\boldsymbol{a} \overline{\boldsymbol{d}}+\boldsymbol{b} \boldsymbol{c} \boldsymbol{d}$

Determination

Given predicate $\boldsymbol{f}=\boldsymbol{b}+\overline{\boldsymbol{a c}}+\boldsymbol{a c}$, suppose we want to identify when \boldsymbol{b} determines \boldsymbol{f}

Draw K-map

Determination

Given predicate $\boldsymbol{f}=\boldsymbol{b}+\overline{\boldsymbol{a c}}+\boldsymbol{a c}$, suppose we want to identify when \boldsymbol{b} determines \boldsymbol{f}

Draw K-map

Predicate Negation

Given predicate $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{b c}$, suppose we want to negate \boldsymbol{f}

Wite down the result: $\overline{\boldsymbol{f}}=\overline{\boldsymbol{b}}+\overline{\boldsymbol{a} \boldsymbol{c}}$

True and False Points

Given $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{c d}$

True points \square are those cells in the K-map where the value of the predicate is true

False points \square are those where

 the value is false
Unique True Points

A unique true point (UTP) with respect to a given implicant is an assignment of truth values such that

The given implicant is true
All other implicants are false

Thus a unique true point test focuses on only one implicant

Unique True Points (UTPs)

Given $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{c d}$

Unique true points for $\boldsymbol{a b}$ TTFF, TTFT, TTTF
Unique true points for $\boldsymbol{C D}$ FFIT, FTIT, TFTT
MIT) is a true point, but not a
unique true point

Multiple Unique True Point Coverage

A minimal representation guarantees the existence of at least one unique true point for each implicant.

Multiple Unique True Points

Given $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{c d}$
Choose unique true points for each implicant such that literals not in the implicant take on values true and false

For implicant $\boldsymbol{a b}$, choose
TIFT n TTIF
For implicant $\boldsymbol{c d}$, choose
FITI An TFIT
MUTP test set:
\{ TTFT, TITF, FTIT, TFIT \}

MUTP Infeasibility

Given the predicate $\boldsymbol{f}=\boldsymbol{a b}+\boldsymbol{b} \overline{\boldsymbol{c}}$
Implicants are $\{\boldsymbol{a} \boldsymbol{b}, \boldsymbol{b} \overline{\boldsymbol{c}}\}$
Both implicants are prime

Neither implicant is redundant

MUTP Infeasibility

Unique true points required by MUTP

$\boldsymbol{a b}:\{T T\}$ causes $\boldsymbol{a b}$ to be true and $\boldsymbol{b} \overline{\boldsymbol{c}}$ to be false

But there's no way to also make clause coth true and false while keeping the implicants true and false as required by MUTP, so MUTP is infeasible
$\boldsymbol{b} \overline{\boldsymbol{c}}:\{$ FTF $\}$ causes $\boldsymbol{a b}$ to be false and $\boldsymbol{b} \overline{\boldsymbol{c}}$ to be true
But there's no way to also make clause a both true and false while keeping the implicants true and false as required by MUTP, so MUTP is infeasible

MUTP Fault Detection

Near False Points and CUTPNFP

A near false point (NFP) with respect to a clause \mathbf{c} in implicant \mathbf{i} is an assignment of truth values such that \mathbf{f} is false, but if \mathbf{c} is negated and all other clauses are left unchanged, then \mathbf{i} and thus \mathbf{f} evaluates to true

At a near false point, \mathbf{c} determines \boldsymbol{f}

Corresponding Unique True Point and Near False PointPair Coverage (CUTPNFP) - Given a minimal DNF	
	representation of a predicate f, for each clause \mathbf{c} in each implicant \boldsymbol{i}, TR contains a unique true point for \boldsymbol{i} and a near false point for such that the points differ only in the truth value of \boldsymbol{c}.

CUTPNFP Example

Given $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{c d}$
For each literal \boldsymbol{c} in each implicant \boldsymbol{i}, choose a unique true point for \boldsymbol{i} and a near false point for \boldsymbol{C} in \boldsymbol{i} such that only the value of \boldsymbol{c} changes

For clause \boldsymbol{a} in $\boldsymbol{a b}$, choose UTP and NFP

TTFF and $\mathbf{F T F F}$ or
TTFT and FTFT or
ITTF and $\mathbf{F T T F}$
For clause \boldsymbol{b} in $\boldsymbol{a b}$, choose UTP and NFP
TTFF and TFFF or
TTFT an TFFT or
ITTF and TFTF
We don't have to pick the same UTP for \mathbf{a} and \boldsymbol{b} but we can to reduce test cases.

CUTPNFP Example (cont'd)

Given $\boldsymbol{f}=\boldsymbol{a b}+\boldsymbol{c d}$
For each literal \boldsymbol{c} in each implicant \boldsymbol{i}, choose a unique true point for \boldsymbol{i} and a near false point for \boldsymbol{c} in \boldsymbol{i} such that only the value of \boldsymbol{c} changes

For clause cincd, choose UTP and NFP

FFIT and $\mathbf{F F F T}$, or
FTIT and FTFT or
TFTT and TFFT
For clause dincd, choose UTP and NFP
FFTT and $\mathbf{F F T F}$, or
FITT an FITF or
TFTT and TFTF
We don't have to pick the same UTP for \mathbf{c} and \boldsymbol{d} but can to reduce test cases.

CUTPNFP Example (cont'd)

Given $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{c d}$
For each literal \boldsymbol{c} in each implicant \boldsymbol{i}, choose a unique true point for \boldsymbol{i} and a near false point for \boldsymbol{C} in \boldsymbol{i} such that only the value of \boldsymbol{c} changes


```
For clause a in ab, choose UTP and NFP
    TTFT and FTFT
For clause b in ab, choose UTP and NFP
    TTFT and TFFT
For clause cincd
    FTIT and FTFT
For clause dincd
    FTIT and FTTF
TR = { TTFT, FTFT, TFFT, FITT, FTTF }
```


CUTPNFP Fault Detection

Multiple Near False Point Coverage

We saw earlier that MUTP can easily be infeasible in its entirety, and the same is true of CUTPNFP.

MNFP Example

Given $\boldsymbol{f}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{c d}$
For each literal \mathbf{c} in each implicant \mathbf{i}, choose near false points such that the clauses not in \mathbf{i} take on values true and false.

mumcut

We can combine the previous three criteria (MUTP, CUTPNFP, and MNFP)

MUTP, MNFP, and CUTPNFP Coverage (MUMCUT) - Given
音
a minimal DNF representation of a predicate f, apply MUTP,
CUTPNFP, and MNFP.

This combination detects all fault classes even when one (or more) of the constituent criteria are infeasible

However, this is a very expensive criterion

Minimal-mumcut criterion

Minimal-MUMCUT uses
feasibility analysis, and adds CUTPNFP and MNFP only when necessary

Guarantees detection of LIF, LRF, and LOF fault types, thus covers all 9 fault types

