
Intro to Software Testing
chapter 1

Why do we test software?

Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637

Adapted from slides by Jeff Offutt and Bob Kurtz

https://go.gmu.edu/SWE637

Testing in the 21st Century

Software defines behavior

- network routers, finance, switching networks, etc.

Today’s software market:

- is much bigger

- is much more competitive

- has more users

Embedded Control Applications

- airplanes - spaceships

- watches - our homes

- cell phones - automobiles

Agile processes put increased pressure on testers

- unit testing critical (with no training or education!)

- Tests are key to functional requirements – but who builds these tests?

2

Industry is going through

a revolution in what

testing means to the

success of software

products.

Software is EVERYWHERE!

3

Software faults, errors, & failures

Software fault: A static defect in the software

Software error: An incorrect internal state that is the manifestation of some fault

Software failure: External, incorrect behavior with respect to the requirements or other
description of expected behavior

Faults in software are equivalent to design mistakes in hardware.

Software does not degrade.

4

Failure, fault, and error example
(non-technical)

A patient gives a doctor a list of symptoms [failure]

The doctor tries to diagnose the root cause or ailment [fault]

The doctor may look for abnormal internal conditions (high blood pressure, irregular
heartbeat) [errors]

Most medical problems result from external attacks (bacteria, viruses)

or degradation as we age.

Software faults are put there (or were always there) and do not “appear”

when a part gets old or wears out. 5

A concrete example

Fault: Should start searching at 0, not 1

Test 1
[2, 7, 0]

Expected: 1
Actual: 1

Test 2
[0, 2, 7]

Expected: 1

Actual: 0

Error: i is 1, not 0, on the first

iteration

Failure: none

Error: i is 1, not 0

Error propagates to the variable count

Failure: count is 0 at the return statement

6

The term “bug”

7

“…an analyzing process must equally have been performed in order to furnish the

Analytical Engine with the necessary operative data; and that herein may also lie a possible

source of error. Granted that the actual mechanism is unerring in its processes, the cards

may give it wrong orders.”

– Ada, Countess of Lovelace (notes on Babbage’s Analytical Engine), 1843

“It has been just so in all of my inventions. The first step is an intuition, and comes with a

burst, then difficulties arise—this thing gives out and [it is] then that 'Bugs'—as such little

faults and difficulties are called—show themselves and months of intense watching, study

and labor are requisite…”

– Thomas Edison, 1878

8
circa 1931

9Recovered from the Harvard Mark II electromechanical computer

The term “bug”

"Bug" is used informally

- sometimes a fault, sometimes error, sometimes failure

This course will try to avoid using this word so that we
understand the precise terminology

Though you’ll probably use or encounter the term bug
informally or at work quite often ☺

10

Spectacular Software Failures

1985-1987: Therac-25 radiation therapy machine software improperly managed
safety lockouts, delivered 100x the planned radiation treatment, 3 patients killed
and at least 3 injured

11

Spectacular Software Failures

NASA’s Mars lander

September 1999; crashed due to unit integration fault

NASA Mars Climate Orbiter

1999; lost due to ground control software error confusing
pound-force seconds (lbf-s) with newton-seconds (N-s)

12

Spectacular Software Failures

2002-2009: Unintended acceleration in Toyota Lexus vehicles linked to engine
controller software defects, 89 people killed

13

Spectacular Software Failures

Heathcare.gov website

Crashed repeatedly on launch – never load tested

Intel Pentium FDIV fault

public relations nightmare

14

Spectacular Software Failures
2018-2019: Two Boeing 737 MAX-8 airliners crash attributed to* untested input

conditions from a failed angle of attack sensor (along with pilot error and

maintenance failures), 346 people killed

15
* Based on the final accident report by the Indonesian National Transportation Safety Committee (NTSC) and the preliminary accident report by the Ethiopian

Ministry of Transport.

We need our software to be

dependable.

16

Testing is one way to assess dependability.

Software testers try to find faults before the

faults find users.

Costly Software Failures

NIST report, “The Economic Impacts of Inadequate Infrastructure for Software

Testing” (2002)

Inadequate software testing costs the US alone between $22 and $59 billion annually

Better approaches could cut this amount in half

Huge losses due to web application failures

Financial services : $6.5 million per hour (just in USA!)

Credit card sales applications : $2.4 million per hour (in USA)

In Dec 2006, amazon.com’s BOGO offer turned into a double discount

Symantec (2007):

most security vulnerabilities are due to faulty software

17

Costly Software Failures

1996: Maiden launch of the European Space Agency’s Ariane 5 rocket destroyed
when the guidance system had a numeric overflow, $370M loss

18

Costly Software Failures

2003: Overloaded electric
transmission wires shorted in
Cleveland, OH and a race
condition in the monitoring software
prevented alarm generation;
cascading failures blacked out 55
million people across eight states in
the northeast US and Ontario,
Canada; $6 billion in economic
losses

19

Dec 2006: Amazon's website offered BOGO that
turned into a double discount

July 2019: Amazon Prime Day glitch gives 99%
discount on $3,000 camera

20

Costly Software Failures

World-wide monetary loss due to

poor software testing and

maintenance is staggering!

21

Testing in the 21st Century

More safety critical, real-time software

Embedded software is ubiquitous

Enterprise applications means bigger programs, more users

Paradoxically, free software increases our expectations

Security is now all about software faults

- secure software is reliable software

The web offers new deployment platform

- Very competitive and very available to more users

- Web apps are distributed

- Web apps must be highly reliable
22

Industry desperately needs our

interventions and help!

23

The true cost of a software failure

Analysis of news articles in 2016 revealed:

606 reported software failures

Impacted half the world’s population

Cost a combined $1.7 trillion US dollars

Poor software is a drag on the world’s economy

Also…super frustrating

24

The true cost of a software failure

Analysis of news articles in 2016 revealed:

606 reported software failures

Impacted half the world’s population

Cost a combined $1.7 trillion US dollars

Poor software is a drag on the world’s economy

Also…super frustrating

25

So what does this mean?

Software testing is getting more important.

What are we trying to do when we test?

What are our goals?

26

Validation & Verification (IEEE)

Validation: The process of evaluating software at the end of software development to
ensure compliance with intended usage

Verification: The process of determining whether the products of a given phase of the
software development process fulfills the requirements established during the
previous phase

IV&V stands for “independent verification & validation”

27

Test goals based on test process maturity

Level 0: There’s no difference between testing and debugging

Level 1: The purpose of testing is to show correctness

Level 2: The purpose of testing is to show that the software doesn’t work.

Level 3: The purpose of testing is not to prove anything specific, but to reduce the risk

of using the software

Level 4: Testing is a mental discipline that helps all IT professionals develop higher

quality software 28

Level 0 explained

Testing is the same as debugging

Does not distinguish between incorrect behavior and mistakes in the program

Does not help develop software that is reliable and safe

This is what we typically teach undergraduate CS majors.

29

Level 1 explained

Purpose is to show correctness

Correctness is impossible to achieve

What do we know if no failures?
- Good software or bad/not enough tests?

Test engineers have no:
- Strict goal

- Real stopping rule

- Formal test technique

- Test managers are powerless

This is what hardware engineers often expect. 30

Level 2 explained

Purpose is to find failures

Looking for failures is a negative activity

Puts testers and developers into an adversarial relationship

What if there are no failures?

This describes most software companies.

How can we move to a team approach??

31

Level 3 explained

Testing can only show the presence of failures

Whenever we use software, we incur some risk

Risk may be small and consequences unimportant

Risk may be great and consequences catastrophic

Testers and developers cooperate to reduce risk

This describes handful of “enlightened” software companies.
32

Level 4 explained
A mental discipline that increases quality

Testing is only one way to increase quality

Test engineers can become technical leaders of project

Primary responsibility to measure and improve software quality

Their expertise should help the developers

This is the way “traditional” engineering works.

33

Where are you?

Are you at level 0, 1, or 2?

Is your organization at work at level 0, 1, or 2?

Or maybe 3?

We hope to teach you to become “change agents”…

Advocates for level 4 thinking

34

Tactical goals: why each test?

If you don’t know why you’re conducting each test,

it won’t be very helpful.

Written test objectives and requirements must be documented

What are your planned coverage levels?

How much testing is enough?

Common objective = spend the budget … test until the ship date…

- sometimes called the “date criterion”

35

Why each test?

If you don’t start planning for each test when the functional requirements are formed,

you’ll never know why you’re conducting the test.

1980: "The software shall be easily maintainable."

Threshold reliability requirements?

What fact does each test try to verify?

Requirements definition teams need testers!

36

Cost of not testing

Poor program managers might say:

“Testing is too expensive.”

Testing is the most time consuming and expensive part of software development

Not testing is even more expensive

If we have too little testing effort early, the cost increases

Planning for testing after development is prohibitively expensive

37

Cost of late testing

38

60

50

40

30

20

10

0

Fault origin (%)

Fault detection (%)

Unit cost (X)

Software Engineering Institute; Carnegie Mellon University; Handbook CMU/SEI-96-HB-002

Assume $1000 unit cost, per fault, 100 faults

Summary:
Why do we test software?

A tester’s goal is to eliminate faults as early as possible.

Improve quality

Reduce cost

Preserve customer satisfaction

39

