
Intro to Software Testing
chapter 2

Model-driven Test Design

Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637

Adapted from slides by Jeff Offutt and Bob Kurtz

https://go.gmu.edu/SWE637

But first...
Quiz time!

Login to Blackboard

Under ‘Assessments’ select ‘Week 1 Quiz – Why Test’

You have 10 minutes

Complexity of testing software

No other engineering field builds products as complicated as software

The term correctness has no meaning

- Is a building correct?

- Is a car correct?

- Is a subway system correct?

Unlike other engineers, we must use abstraction to manage complexity

- This is the purpose of the model-driven test design process

- The “model” is an abstract structure

3

Software Testing Foundations (2.1)

Testing can only show the presence of failures

Not their absence

4

Testing and Debugging

Testing: evaluating software by observing its execution

Test failure: execution of test that results in software failure

Debugging: The process of finding a fault given a failure

Not all inputs will “trigger” a fault into causing a failure!

5

Fault & Failure Model (RIPR)

Four conditions necessary for a failure to be observed

1. Reachability: The location or locations in the program that contain the fault must be
reached

2. Infection: The state of the program must be incorrect

3. Propagation: The infected state must cause some output or final state of the program to
be incorrect

4. Revealability: The tester must observe part of the incorrect portion of the program state.

7

RIPR Model

8

Reachability

Infection

Propagation

Revealability

Test

Fault

Incorrect

Program

State

Test Oracles

Final Program State

Observed Final

Program State

Reaches

Infects
Propagates

Reveals

Incorrect

Final State

Traditional Testing Levels (2.3)

9

class A class B

main()

method mA2() method mB2()

method mB1()method mA1()

Users

10

class A class B

main()

method mA1()

method mA2()

method mB1()

method mB2()
Unit testing: test each unit

(method) individually

Users

Traditional Testing Levels (2.3)

11

class A class B

main()

method mA1()

method mA2()

method mB1()

method mB2()
Unit testing: test each unit

(method) individually

Module testing: test each

class, file, module, component

Users

Traditional Testing Levels (2.3)

12

class A class B

main()

method mB2()
Unit testing: test each unit

(method) individually

Module testing: test each

class, file, module, component

Integration testing: test how

modules interact

method mA2()

method mA1() method mB1()

Users

Traditional Testing Levels (2.3)

13

class A class B

main()

method mB2()
Unit testing: test each unit

(method) individually

Module testing: test each

class, file, module, component

Integration testing: test how

modules interact

method mA2()

method mA1() method mB1()

System testing: test the overall

functionality of the system

Users

Traditional Testing Levels (2.3)

14

class A class B

main()

method mB2()
Unit testing: test each unit

(method) individually

Module testing: test each

class, file, module, component

Integration testing: test how

modules interact

method mA2()

method mA1() method mB1()

System testing: test the overall

functionality of the system

Acceptance testing: is software

acceptable to the user?

Users

Traditional Testing Levels (2.3)

V Model of System Development

15

Requirements

Architectural Design

Subsystem Design

Detailed Design

Implementation

Acceptance Test

System Test

Integration Test

Module Test

Unit Test

Coverage Criteria (2.4)

16

Even small programs have too many inputs to fully test them all
• private static double computeAverage (int A, int B, int C)

• On a 32-bit machine, each variable has over 4 billion possible values

• Over 80 octillion possible tests!!

• Input space might as well be infinite

Testers search a huge input space for fewest inputs that will find the most problems

Coverage criteria give structured, practical ways to search the input space
• search the input space thoroughly

• not much overlap in the tests

Advantages of Coverage Criteria

Maximize the “bang for the buck”

Provide traceability from software artifacts to tests

- source, requirements, design models,…

Make regression testing easier

Gives testers a “stopping rule” … when testing is finished

Can be well supported with powerful tools
17

Test requirements and criteria

Test criterion: A collection of rules and a process that defines test requirements

- Cover every statement

- Cover every functional requirement

Test requirements: specific things that must be satisfied or covered during testing

- each statement might be a test requirement

- each functional requirement might be a test requirement

18

Test requirements and criteria

1. Input domains

2. Graphs

3. Logic expressions

4. Syntax descriptions

19

Testing researchers have defined dozens of criteria, but they are all really

just a few criteria on four types of structures:

Old view: color boxes
Opaque testing: derive tests from external descriptions of the software,
including specifications, requirements, and design

Transparent testing: derive tests from the source code internals of the
software, specifically including branches, individual conditions, and
statements

Model-based testing: derive tests from a model of the software (such as a
UML diagram)

20

MDTD makes these distinctions less important.

The more general question is:

from what abstraction level do we derive tests?

Model-driven test design (2.5)

Test design is the process of designing input values that will effectively test software

Test design is one of the several activities for testing software

- Most mathematical

- Most technically challenging

21

Types of test activities
Testing can be broken up into four general types of activities

1. Test design

1.a. Criteria-based

1.b. Human-based

2. Test automation

3. Test execution

4. Test evaluation

Each type of activity requires different skills, background knowledge, education,
and training

22

1(a) Test design – criteria-based
Design test values to satisfy coverage criteria or other engineering goal

This is the most technical job in software testing

Requires knowledge of:

- discrete math

- programming

- testing

Requires much of a traditional CS degree

This is intellectually stimulating, rewarding, and challenging

Test design is analogous to software architecture on the development side

Using people who are not qualified to design tests is a sure way to get ineffective tests
23

This class is primarily about
criteria-based test design

1. Test design – (b) human-based
Design test values based on domain knowledge of the program and human

knowledge of testing

This is much harder than it may seem to developers

Criteria-based approaches can be blind to special situations

Requires knowledge of:

- domain, testing, and user interfaces

Requires almost no traditional CS

- a background in the domain of the software is essential

- an empirical background is very helpful (biology, psychology…)

- a logic background is very helpful (law, philosophy, math…)

This is intellectually stimulating, rewarding, and challenging

- But not to typical CS majors – they want to solve problems and build things 24

2. Test automation
Embed test values into executable scripts

This is slightly less technical

Requires knowledge of programming

Requires very little theory

Often requires solutions to difficult problems related to observability and controllability

Can be boring for test designers

Programming is out of reach for many domain experts

Who is responsible for determining and embedding the expected outputs?

- Test designers may not always know the expected outputs

- Test evaluators need to get involved early to help with this
25

3. Test Execution

Run tests on the software and record the results

This is easy if the tests are well automated

• Asking qualified test designers to execute tests is a sure way to
convince them to look for a development job

If tests are not automated, this requires a lot of manual labor

Test executors have to be very careful and meticulous with bookkeeping

26

4. Test Evaluation
Evaluate results of testing, report to developers

This is much harder than it may seem

Requires extensive domain knowledge

This is intellectually stimulating, rewarding, and challenging

• But not to typical software developers – they want to solve problems and build things

27

Other testing activities
Test management: Set policy, organize teams, interface with

development, choose criteria, decide how much automation needed...

Test maintenance: Save test for reuse as software evolves
• requires cooperation of test designers and automators
• Deciding when to trim the test suite is partly policy, partly technical – and

in general, very hard!
• Test should be put in configuration control

Test documentation: all parties participate
• Each test must document "why" -- criterion and test requirement satisfied or rational for

human-designed tests

• Ensure traceability
• Keep documentation in automated tests 28

Using MDTD in Practice

This approach lets one test designer do theory

Then traditional testers and programmers can do their parts
• Find values

• Automate tests

• Run tests

• Evaluate tests

Just like traditional engineering...an engineer constructs models
calculus, then gives directions to carpenters, electricians, etc...

29

Model-driven test design

30

software artifact implementation

abstraction

level

design

abstraction

level

test requirements

test requirements

refined requirements /

test specs

input

values

test casestest

scripts

test

results

model / structure

pass / fail

Model-driven test design Steps

31

software artifact implementation

abstraction

level

design

abstraction

level

test requirements

test requirements

refined requirements /

test specs

input

values

test casestest

scripts

test

results

model / structure

pass / fail

analysis

domain
analysis

criterion refine

generate

prefix
postfix

expected

automateexecuteevaluate

Model-driven test design Activities

32

software artifact implementation

abstraction

level

design

abstraction

level

test requirements

test requirements

refined requirements /

test specs

input

values

test casestest

scripts

test

results

model / structure

pass / fail

Test Design

Test

Evaluation

Test

Execution

Small example

33

Software Artifact : Java Method
/**

* Return index of object o at the
* first position it appears,
* -1 if it is not present

*/
public int indexOf (Object o)
{

for (int i=0; i < list.size(); i++)
if (list.get(i).equals(o))

return i;
return -1;

}

1

2

3 4

5 6

i=0

i<list.size()

return -1 if (…)

return i i++

Control Flow Graph

Example (continued)

34

Support tool for graph coverage

http://www.cs.gmu.edu/~offutt/softwaretest/

Initial Node: 1

Final Nodes: 3, 5

Edges:

(1, 2)

(2, 3)

(2, 4)

(4, 5)

(4, 6)

(6, 2)

1

2

3 4

5 6

i=0

i<list.size()

return -1 if (…)

return i i++

http://www.cs.gmu.edu/~offutt/softwaretest/

Example (continued)

35

Support tool for graph coverage

http://www.cs.gmu.edu/~offutt/softwaretest/

6 requirements for Edge Coverage

1. [1, 2]

2. [2, 3]

3. [2, 4]

4. [4, 5]

5. [4, 6]

6. [6, 2]

Test Paths

[1, 2, 3]
[1, 2, 4, 6, 2, 4, 5]

Next we need to find values to execute those test paths

1

2

3 4

5 6

i=0

i<list.size()

return -1 if (…)

return i i++

http://www.cs.gmu.edu/~offutt/softwaretest/

Example (continued)

36

Support tool for graph coverage

http://www.cs.gmu.edu/~offutt/softwaretest/

Test Path [1, 2, 3]

list = {}

o = null

Test Path [1, 2, 4, 6, 2, 4, 5]
list = {1, 2}

o = 2

1

2

3 4

5 6

i=0

i<list.size()

return -1 if (…)

return i i++

We'll talk about implementation in future classes

http://www.cs.gmu.edu/~offutt/softwaretest/

