
Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637

Adapted from slides by Jeff Offutt and Bob Kurtz

Intro to Software Testing
chapter 5

Criteria- based Testing

https://go.gmu.edu/SWE637

Changing Notions of Testing

The old (but still useful) view was based on each software development
phase being very different from the others

Requirements

Architectural

Design

Subsystem

Design

Detailed Design

Implementation

Acceptance Test

System Test

Integration Test

Module Test

Unit Test

2

Changing Notions of Testing

The new view is based on structures and criteria

• Input space, graphs, logical expressions, syntax

Test design is largely the same at each phase

• Creating the model is different

• Choosing test values is different

• Automating the tests may be quite different

3

Test Coverage

The tester’s job is simple –

define a model of the software, then find ways to cover it

Coverage matters…

4

Test Coverage Criteria

Test Criterion: A collection of rules and a process that define test requirements

Test Requirements: Specific things that must be satisfied or covered

during testing

5

Model-Driven Test Design

software artifact implementation

abstraction

level

design

abstraction

level

test requirements

test requirements

refined requirements /

test specs

input

values

test casestest

scripts

test

results

model / structure

pass / fail

Test Design

Test

Evaluation

Test

Execution

Criteria give us test

requirements

6

Test Requirements & Criteria
Testing researchers have defined dozens of criteria, but they are all based on

four types of structures:

1. Input domains

2. Graphs

3. Logic expressions

4. Syntax descriptions

7

Sources of Structures

Structures can be extracted from many different artifacts

• Graphs can be extracted from UML use cases, source code, finite state machines,

etc.

• Logical expressions can be extracted from conditions in use cases, decisions in

source code, guards on FSE transitions, etc.

8

Defining Coverage

Given a set of test requirements TR for

coverage criterion C, a test set T satisfies C

coverage if and only if for every test

requirement tr in TR, there is at least one test t

in T such that t satisfies tr

D
E

F
IN

IT
IO

N

Infeasible test requirements: test requirements that cannot be satisfied
•No test case values exist that meet the test requirement

•Example: dead code

•Detection of infeasible test requirements is formally undecidable for most test

criteria

9

Software cannot be fully tested

https://xkcd.com/2200/

10

Example: Jellybean coverage

Flavors

Lemon

Pistachio

Cantaloupe

Pear

Tangerine

Apricot

Colors

Yellow
lemon, apricot

Green
pistachio

Orange
cantaloupe, tangerine

White
pear

Possible coverage criteria:
Taste one jelly bean of each flavor

Choosing between lemon and apricot is a controllability problem

Taste one jelly bean of each color
11

More Jellybean Coverage

T1 = (three Lemon, one Pistachio, two Cantaloupe, one Pear, one Tangerine,
four Apricot }

Does this test set T1 satisfy the flavor criterion?

T2 = { one Lemon, two Pistachio, one Pear, three Tangerine }

Does test set T2 satisfy the flavor criterion?

Does test set T2 satisfy the color criterion?

12

Coverage Level

T2 = { one Lemon, two Pistachio, one Pear, three Tangerine }

T2 satisfies:

• 4 of 6 test requirements for the flavor criterion, or 67%

• 4 of 4 test requirements for the color criterion, or 100%

Coverage level is the ratio of the

number of test requirements satisfied

by T to the size of TR
D

E
F
IN

IT
IO

N

13

Comparing Criteria with Subsumption

The subsumption relationship must hold for every set of test cases

The flavor criterion on jelly beans subsumes the color criterion – if we taste every flavor, then we’ve

tasted every color (but not vice-versa)

The branch criterion on code subsumes the statement criterion – if we execute every branch, then
we’ve executed every statement (but not vice-versa)

A test criterion C1 subsumes C2 if and only if

every set of test cases that satisfies criterion

C1 also satisfies C2D
E

F
IN

IT
IO

N

14

Advantages of criteria-based design

Criteria maximize “bang for the buck”

• Leads to fewer tests that are more effective at finding faults

Comprehensive test sets with minimal overlap

Traceability from software artifacts to tests

• Answers “why have this test” for every test

Provides a stopping rule for testing, with advance knowledge of how many tests

are needed

Natural to automate

15

Characteristics of good criteria

1. It should be easy to compute test requirements automatically

2. It should be efficient to generate test values

3. Resulting tests should reveal as many faults as possible

Subsumption is a rough but useful approximation of the ability of a criterion to reveal faults

16

