
Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637

Adapted from slides by Jeff Offutt and Bob Kurtz

Intro to Software Testing
chapter 12

Test Doubles

https://go.gmu.edu/SWE637


Consider testing a system which implements the following constraints:

If the light is red and the valve is open, then release the monster.

If the valve is open and the switch is on, release the monster.

Test Doubles – why?



Test Doubles – why?

1. If the light is red and the valve is open then release the monster.

2. If the valve is open and the switch is on then release the monster.

3



Test Doubles – why?

1. If the light is red and the valve is open then release the monster.

2. If the valve is open and the switch is on then release the monster.

4



Test Doubles – why?

The necessary dependency is not implemented yet – but I can’t afford to wait

There may be unrecoverable actions that result from using the dependency – releasing 

the monster, sending customer emails, executing a security lockdown, launching a missile

The dependency may have nondeterministic properties – intentional randomness, 

timing, intermittent failures, etc.

Irrelevant changes to the dependency later on may break our tests – this is a major 
source of test maintenance effort

We need some dependency-like functionality without the mess 5



Types of Test Doubles

Stubs are custom-developed bits of functionality that simulate the dependency through 

custom code.

Mocks are tool-provided bits of functionality that simulate the dependency 

through specification.

There are additional terms in use

• “Dummy”, “spy”, “fake”, etc.

• Some sources differentiate between them, and others don’t – we’ll use stubs and mocks

• Simulators are more complex substitutes that have deep functional capabilities

6



How to insert Test Doubles

We could get our double into the test by:

• Having a different version of the UUT that doesn’t use the real detonator

But then we’re not testing the deliverable software, and multiple versions are hard to maintain 

and will tend to get out of sync with each other

JUnit Test
Unit under 

test (UUT)

Detonator 

dependency

Detonator 

double
“Boom!”

7



What is a seam?

A seam is a control point where we can change the behavior of the software

• With the compiler

• With the classpath or linker

• With inheritance

• With the JVM (or more broadly, any interpreter)

8



Compiler Seams

Add code that enables a “test mode”
• if (TEST_MODE) { // do something special }

• Use a “test mode” constructor

Advantages

• Easy to understand and fast to implement

Disadvantages

• We’re not testing the same code that will be used in the delivered system
9



Classpath/Linker Seams

Replace dependency classes with test double classes by redirecting 

the classpath to a test directory (in Java) or by linking in alternate test double 
object files (in C++)

Advantages

• No change to the UUT, we test exactly what we’ll deliver

• Fairly easy to implement

Disadvantages

• Maintenance of test double classes can be time-consuming with a risk of using the wrong 

one 10



Inheritance Seams

Derive a new child class of the dependency and override the functionality with test 
functionality

• Alternate approach – define an interface and have real and test double classes implement it

Advantages

• No change to the UUT, we test exactly what we’ll deliver

Disadvantages

• Can be difficult to insert alternate classes, may require code changes to use static factories 
or dependency injection

public class BombDetonatorTestDouble implements BombDetonatorInterface {
@Override
public void Detonate () {

System.out.println(“Boom!”);
}

}

11



Dependency Injection

Always pass in the dependency via the constructor or setter method, probably 
as a base class or an interface

Advantages

• Very flexible, allows lots of types of stubs

Disadvantages

• Breaks encapsulation, as the calling class now needs to know about (and create) the dependency 

to pass it in – classes need to know about their “grandchild” objects 12



Dependency Injection

Class B uses Class C

• Since B can either use the real C or a double 
for C, B only knows about a generic interface 
for C

• The real dependency CReal and the test 
double CDouble both implement Interface C

The class using B provides the appropriate 
implementation of Interface C

• Calling Class A creates class CReal and passes it 
to Class B

• Calling class BTest creates class CDouble and 
passes it to Class B

Class A

Class B

Interface C

Class CReal Class CDouble

Class BTest

13



JVM Seams

Define a mock object and the mocking framework will cause the JVM to use 
the mock instead of the real dependency

Advantages

• No change to the UUT or to any other part of the system, it’s completely transparent

• Easy with the right mocking framework

Disadvantages
• Only works with Java

• Typically substitutes a single static mock in place of any/all instances of the real dependency
14



Mocking getPrimeFactors()

Class Factors

• Has method getCommonPrimeFactors() that returns the 

common prime factors of two integers

• Calls method getPrimeFactors() of class PrimeFactors

to get the prime factors for each integer

• Is called by Class A

• Is tested by class FactorsTest

Class A

Class Factors
getCommonPrimeFactors(int,int)

Class PrimeFactors
getPrimeFactors(int)

Class
FactorsTest

15



Mocking getPrimeFactors()

@RunWith(JMockit.class)
public class FactorsTest
{

@Mocked
PrimeFactors primeFactorsMock;

@Test
public void testCommonPrimeFactors() {

// Define output data needed by the prime factor mock
List<Integer> factorsOf4 = Arrays.asList(2);
List<Integer> factorsOf6 = Arrays.asList(2, 3);

// Specify the mock behavior
new Expectations() {{

PrimeFactors.getPrimeFactors(4);
returns(factorsOf4);

PrimeFactors.getPrimeFactors(6);
returns(factorsOf6);

}};

// Execute the test
List<Integer> commonPrimeFactors = Factors.getCommonPrimeFactors(4, 6);
assertEquals(1, commonPrimeFactors.size());
assertEquals(2, commonPrimeFactors.get(0).intValue());

}
}

Declare the mock – the JVM will 

automatically use it instead of the real 

PrimeFactors class

Declare data for the mock to 

return

Tell the mock what it should 

expect and what it should do

Execute the test and verify the 

expected results (as usual)

16



Stub, Mock, or Simulator?

For extremely simple dependency substitutions, like when return true 
is all that’s needed, a stub may be sufficient

• But since it typically results in yet another test class, using a mock 

might still be easier

For more complex scenarios when you want to verify that 

calling expectations were met and want to return more complex 

sequences of values, a mock is preferable

For highly complex scenarios like generating real-time data streams 

based on physical systems, a simulator is appropriate
17



More About Seams

For a details on how to exploit 

seams in legacy software 

for testing, see Michael Feathers’ 

book Working Effectively with 

Legacy Code

18


