
Intro to Software Testing
chapter 7

Graph Coverage

Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637

Adapted from slides by Jeff Offutt and Bob Kurtz

https://go.gmu.edu/SWE637

Graph Coverage

2

Structures for
Modeling Software

Input Space Graphs

Source

Design

Specs

Use Cases

Logic

Source

FSMs

Specs

DNF

Syntax

Source

Models

Integration

Input

Applied to Applied to Applied to

Covering Graphs

Graphs are the most commonly used structure for testing

Graphs can come from many sources

Control flow graphs

Design structure

Finite state machines and state charts

Use cases

Implementation knowledge is usually needed (“white box”)

3

Definition of a graph

A set N of nodes, where N ≠ Ø

A set N0 of initial nodes, where N0 ⊆ N

A set Nf of final nodes, where Nf ⊆ N

A set E of edges, where each edge connects one node to another

Denoted (ni, nj) where i is the predecessor node and j is the successor node

4

Example Graphs

5

1

2 3

4

N0 = { 1 }
Nf = { 4 }

E = { (1,2), (1,3),
(2,4), (3,4) }

6

1

4 5

8

3

6 7

10

2

9

N0 = { 1, 2, 3 }
Nf = { 8, 9, 10 }

E = { (1,4), (1,5), (2,5), (3,6),
(3,7), (4,8), (5,8), (5,9),

(6,2), (6,9), (6,10), (7,10) }

1

2 3

4

N0 = { 1 }
Nf = { 4 }

E = { (1,2), (1,3),
(2,4), (3,4) }

1

4 5

8

3

6 7

10

2

9

N0 = { 1, 2, 3 }
Nf = { 8, 9, 10 }

E = { (1,4), (1,5), (2,5), (3,6),
(3,7), (4,8), (5,8), (5,9),

(6,2), (6,9), (6,10), (7,10) }

Example Graphs

7

1

2 3

4

N0 = { 1 }
Nf = { 4 }

E = { (1,2), (1,3),
(2,4), (3,4) }

1

4 5

8

3

6 7

10

2

9

N0 = { 1, 2, 3 }
Nf = { 8, 9, 10 }

E = { (1,4), (1,5), (2,5), (3,6),
(3,7), (4,8), (5,8), (5,9),

(6,2), (6,9), (6,10), (7,10) }

1

2 3

4

N0 = { }
Nf = { 4 }

E = { (1,2), (1,3),
(2,4), (3,4) }

Example Graphs

Path: a sequence of nodes [n1, n2, … nM]

Recall that each pair of nodes is an edge

Length: the number of edges

A single node is a path of length 0

Subpath: a subsequence of nodes in p is a subpath of p

8

A few paths:

[1, 4, 8]

[2, 5, 9, 6]

[5, 9, 6, 10]

Example Graphs

Test paths and SESE Graphs

Test Path: a path that starts at an initial node and ends at a final node

Test paths represent execution of test cases

Some test paths can be executed by many tests

Some test paths cannot be executed by any tests

Single-Entry Single-Exit (SESE) Graphs: all test paths start at one node and end at one

node

N0 and Nf each have exactly one node

9

Double-diamond graph

Four test paths:

[1, 2, 4, 5, 7]

[1, 2, 4, 6, 7]

[1, 3, 4, 5, 7]
[1, 3, 4, 6, 7]

1

2

3

4

5

6

7

Visiting and Touring

Visit

a test path p visits node n if n is in p,

a test path p visits edge e if e is in p

10

Given test path p = [1, 2, 4, 5, 7]

p visits nodes 1, 2, 4, 5, 7

p visits edges (1,2), (2,4), (4,5), (5,7)

p tours subpaths [1, 2], [2, 4], [4, 5], [5, 7],

[1, 2, 4], [2, 4, 5], [4, 5, 7], [1, 2, 4, 5], [2, 4, 5, 7],

[1, 2, 4, 5, 7]

Tour

a test path p tours subpath q if q is a subpath of p

Tests and Test Paths

path (t): the test path executed by test t

path (T): the set of test paths executed by the set of tests T

Each test executes exactly one test path

It is the complete execution from some initial node to some final node

11

Reaching Graph Locations

A location (node or edge) in a graph can be reached from another location if there is a

sequence of edges from the first location to the second

Syntactic reach: a subpath exists in the graph from the first location to the second

This is based only on the graph structure

Semantic reach: a test exists that can execute that subpath

This considers the actual implementation logic

12

Covering Graphs

We use graphs in testing to:

Develop a model of the software (as a graph)

Require tests to visit or tour nodes, edges, or subpaths

Test requirements (TRs) describe the properties of test paths

Test criteria are rules that define the test requirements

13

Satisfaction – given a set of test requirements TR for a criterion C, a set

of tests T satisfies C on a graph if and only if for each test requirement

tr in TR, there is a test path in path(T) that meets the test requirement

tr.D
E

F
IN

IT
IO

N

Structural Coverage Criteria

Structural coverage criteria are defined on a graph only in terms of
nodes and edges

The goal of structural coverage is to ensure that control flow executes

successfully

14

Node Coverage

The first (and simplest) structural coverage criteria requires that each

node in a graph be executed

Or, in terms of test requirements

15

Node Coverage (NC) – test set T satisfies node coverage on graph G if

and only if for every syntactically reachable node n in N, there is some

path p in path(T) such that p visits n.D
E

F
IN

IT
IO

N

Node Coverage (NC) – TR contains each reachable node in G.

D
E

F
IN

IT
IO

N

Is node coverage the same as “statement coverage”?

Edge Coverage

Edge coverage is slightly stronger than NC

“length up to 1” allows for graphs with one node and no edges

EC TRs differ from NC TRs only
when there is a path with length>1
and a path with length=1 between
two nodes

Example: if-then statement

16Is edge coverage the same as “branch coverage”?

Edge Coverage (EC) – TR contains each reachable path of length up to

1, inclusive, in G.
D

E
F
IN

IT
IO

N

1

2

3

if (…)

true

false

…

…

Path length "up to 1"?

A path with only one node has no edges

It may seem trivial, but formally edge coverage must require node

coverage on this graph, otherwise EC will not subsume NC

We will see the same issue later for edge-pair coverage when a

graph has only one edge

17

1

Covering Multiple Edges

Edge-pair coverage requires pairs of edges, or subpaths of

length=2

“length up to 2” allows for graphs with two nodes and one edge

18

Edge-Pair Coverage (EPC) – TR contains each reachable path of length

up to 2, inclusive, in G.

D
E

F
IN

IT
IO

N

Edge-Pair Coverage:

TR = { [1,3,4], [1,3,5],

[2,3,4], [2,3,5] }

1

2

3

4

5

Covering Multiple Edges

This suggests an obvious extension to…

But this is impossible if the graph has a loop

A weak compromise is to let the tester decide which paths to test

19

Complete Path Coverage (CPC) – TR contains all paths in G.
D

E
F
IN

IT
IO

N

Specified Path Coverage (SPC) – TR contains a set S of test paths,

where S is supplied as a parameter.

D
E

F
IN

IT
IO

N

Structural Coverage Example

20

Node Coverage:

TR = { 1, 2, 3, 4, 5 }

Test paths = [1, 2, 3, 4, 3, 5]

1

2

3

4

5

Edge Coverage:

TR = { (1,2), (1,3), (2,3),

(3,4), (4,3), (3,5) }

Test paths = [1, 2, 3, 4, 3, 5],

[1, 3, 5]

Edge-Pair Coverage:

TR = { [1,2,3], [1,3,4], [1,3,5],

[2,3,4], [2,3,5], [3,4,3],

[4,3,4], [4,3,5] }

Test paths = [1, 2, 3, 4, 3, 5],
[1, 3, 4, 3, 4, 3, 5],

[1, 3, 5], [1, 2, 3, 5]

Structural Coverage Example

21

1

2

3

4

5

Complete Path Coverage:

Test paths = [1, 3, 5], [1, 2, 3, 5],

[1, 2, 3, 4, 3, 5],

[1, 2, 3, 4, 3, 4, 3, 5],

[1, 2, 3, 4, 3, 4, 3, 4, 3, 5],

[1, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 5],

…

Handling Loops in Graphs

If a graph contains a loop, then it has an infinite number of paths

Complete path coverage is infeasible

SPC is not satisfactory because the results are subjective and vary
with the tester

Attempts to deal with loops
1980s: execute loops exactly once

1990s: execute loops 0, 1, >1 times

2000s: prime paths (touring, sidetrips, detours)

22

1

Simple Paths and Prime Paths

Simple path: a path from node ni to nj is simple if no node appears more

than once, except that the first and last nodes may be the same

A simple path has no loops within it, but a loop is itself a simple path

Prime path: a simple path that does not appear as a proper subpath of any

other simple path

23

Simple Paths:

[1,2], [1,3], [2,4], [3,4], [4,1],

[1,2,4], [1,3,4], [2,4,1], [3,4,1], [4,1,2], [4,1,3],

[1,2,4,1], [1,3,4,1], [2,4,1,2], [2,4,1,3],

[3,4,1,2], [3,4,1,3], [4,1,2,4], [4,1,3,4]
Prime Paths:

[1,2,4,1], [1,3,4,1], [2,4,1,2], [2,4,1,3],

[3,4,1,2], [3,4,1,3], [4,1,2,4], [4,1,3,4]

1

2 3

4

Prime Path Coverage

A simple, elegant and finite criterion that requires loops to be executed as

well as skipped

Will tour all paths of length 0, 1, … , N

Subsumes node and edge coverage

24

Prime Path Coverage (PPC) – TR contains each prime path in G.

D
E

F
IN

IT
IO

N

PPC Does Not Subsume EPC

If a node j has an edge to itself (a self edge), then edge-pair coverage

requires [i, j, j] and [j, j, k]

Neither [i, j, j] nor [j, j, k] are simple paths and thus not prime paths

25

EPC Requirements:

TR = { [1,2,3], [1,2,2], [2,2,2], [2,2,3] }

PPC Requirements:

TR = { [1,2,3], [2,2] }

1

2

3

Prime Path Example

26

Simple Paths (16):

[1,2], [1,3], [2,3], [3,4], [3,5], [4,3],

[1,2,3], [1,3,4], [1,3,5], [2,3,4], [2,3,5],

[3,4,3], [4,3,4], [4,3,5],

[1,2,3,4], [1,2,3,5]
1

2

3

4

5

Prime Paths (7):

[1,3,4],

[1,3,5],

[3,4,3],

[4,3,4],
[4,3,5],

[1,2,3,4],

[1,2,3,5]

Loop 0 times

Loop at least

once
Loop more than

once

Touring

Tour: a test path p tours subpath q if q is a subpath of p

27

Touring the prime path [1,2,3,5,6]

without sidetrips or detours

1 2 53 6

4

Touring with Sidetrips

Tour with sidetrips: a test path p tours subpath q with sidetrips if

and only if every edge in q is also in p in the same order

The tour can sidetrip from node ni as long as it comes back to ni

28

Touring the prime path [1,2,3,5,6]

with a sidetrip to node 4

1 2 53 6

4

Touring with Detours

Tour with detours: a test path p tours subpath q with detours if and

only if every node in q is also in p in the same order

A tour can detour from node ni as long as it comes back to the prime

path at a successor of ni

29

Touring the prime path [1,2,3,5,6]

with a detour to node 4

1 2 53 6

4

Infeasible Test Requirements

An infeasible test requirement cannot be satisfied

Unreachable statement (dead code)

Subpath that can only be executed with a contradiction (x > 0 and x < 0)

Most test criteria have some infeasible test requirements

It is usually undecidable whether all test requirements are feasible

When sidetrips are not allowed, structural criteria typically

have more infeasible requirements

However, allowing sidetrips weakens the test criteria

30

Best effort Touring

Best effort touring is a practical compromise

Satisfy as many test requirements as possible without sidetrips

Allow sidetrips to try to satisfy remaining test requirements

31

Data Flow Coverage

Data flow coverage criteria also require the graph to be annotated

with references to variables

The goal of data flow coverage is to ensure that values are computed

and used correctly

Definition (Def): a location where a variable’s value is set

Use: a location where a variable’s value is accessed

32

Def-Use

The values set in each def should reach at least one, some,

or all possible uses.

33

Defs:

def(1) = { x }

def(5) = { z }

def(6) = { z }

Uses:

use(5) = { x }

use(6) = { x }

1

2

3

4

5

6

7

x=42

z=x*2

z=x-8

DU Pairs

def(n) or def(e): the set of variables that are defined by node n or edge e

use(n) or use(e): the set of variables that are used by node n or edge e

DU pair: a pair of locations (li, lj) such that a variable v is defined at li and

used at lj

34

DU Paths

Def-clear: a path from li to lj is def-clear with respect to variable v if v is not

given another value on any of the nodes or edges of the path

Reach: if there is a def-clear path from li to lj with respect to v, the def of v

at li reaches the use of v at lj

DU-path: a simple subpath that is def-clear with respect to v from a def

of v to a use of v

35

Touring DU-Paths

A test path p DU-tours subpath d with respect to v if p tours d and

the subpath taken is def-clear with respect to v

Sidetrips can be used as with previous touring

Three obvious criteria

Use every def

Get to every use

Follow all DU-paths

36

Data flow test criteria

First, ensure every def reaches a use

Then, ensure every def reaches all uses

Finally, cover all the paths between defs and uses

37

All-Defs Coverage (ADC) – for each set of DU-paths S=du(n,v), TR

contains at least one path d in S.
D

E
F
IN

IT
IO

N

All-Uses Coverage (AUC) – for each set of DU-paths to uses

S=du(ni,nj,v), TR contains at least one path d in S.

D
E

F
IN

IT
IO

N

All-DU-Paths Coverage (ADUPC) – for each set S=du(ni,nj,v), TR

contains every path d in S.

D
E

F
IN

IT
IO

N

Data flow testing example

38

All-defs for x:

[1, 2|3, 4, 5|6]

All-uses for x:

[1, 2|3, 4, 5],

[1, 2|3, 4, 6]

All-DU-paths for x:

[1, 2, 4, 5],

[1, 3, 4, 5],

[1, 2, 4, 6],

[1, 3, 4, 6]

1

2

3

4

5

6

7

x=42

z=x*2

z=x-8

Graph Coverage Criteria Subsumption

39

Complete Path Coverage

(CPC)A test criterion C1 subsumes C2

if and only if every set of test

cases that satisfies criterion C1

also satisfies C2D
E

F
IN

IT
IO

N

Edge-Pair Coverage (EPC)Pr ime Path Coverage (PPC)

Complete Round-Trip

Coverage (CRTC)

Simple Round-Trip Coverage

(SRTC)

Edge Coverage (EC)

Node Coverage (NC)

All DU-Paths Coverage

(ADUPC)

All-Uses Coverage (AUC)

All-Defs Coverage (ADC)

Subsumes all others

Summary

Graphs are a powerful abstraction for designing tests

Various criteria allow cost/benefit trades

Graphs appear in many situations in software

We’ll explore this further next week

40

