
Introduction to Software Testing
Chapter 1: Why do we test?

Software Testing & Maintenance
SWE 437
http://go.gmu.edu/swe437

Dr. Brittany Johnson-Matthews
(Dr. B for short)

http://go.gmu.edu/swe437

Software in the 21st Century
Software defines behavior
 - network routers, finance, switching networks, etc.
Today’s software market:
 - is much bigger
 - is much more competitive
 - has more users

Systems are constantly and rapidly evolving.
2

Testing in the 21st Century
With rapid development of innovative tech comes higher need for

effective validation of software systems.

Agile processes put increased pressure on testers
 - unit testing critical (with no training or education!)
 - Tests are key to functional requirements – but who builds these tests?

3

Industry is going through a revolution in what
testing means to success of software products.

4

Software is EVERYWHERE…
& in everything we do.

Software is embedded in:
- personal devices
- motor vehicles
- criminal justice
- and so much more!

5

Software faults, errors, & failures
Fault: A static defect in the software

Error: An incorrect internal state that is the manifestation of some fault

Failure: External, incorrect behavior with respect to the requirements or
other description of expected behavior

Faults in software are equivalent to design mistakes in hardware.
Software does not degrade.

6

Failure, fault, error (non-technical)
A patient gives a doctor a list of symptoms
 - Failures
The doctor tries to diagnose the root cause (ailment)
 - Fault
The doctor may look for abnormal internal conditions (high blood pressure, irregular
heartbeat)
 - Errors

However…
most medical problems result from external attacks (bacteria, viruses) or degradation.

Software faults are put there (or were always there) and
do not “appear” when a part gets old or wears out. 7

A concrete example
Fault: Should start searching at 0, not 1

Test 1
arr = [2, 7, 0]
Expected: 1
Actual: 1

Error: i is 1, not 0, on the
first iteration
Failure: none

Test 2
arr = [0, 2, 7]
Expected: 1
Actual: 0

Error: i is 1, not 0
Error propagates to the variable count
Failure: count is 0 at the return statement

8

The term “bug”
”Bug” is used informally
 - sometimes a fault, sometimes error,
sometimes failure

This course will try to avoid using this word so that
we understand the precise terminology

Though you’ll probably use or encounter the term
bug informally or at work quite often J

9

Infamous software failures

NASA’s Mars lander
 September 1999; crashed due to unit

integration fault

THERAC-25 radiation machine
 1980s; poor testing of safety critical

software can cost lives : 3 patients killed
10

Infamous software failures

Ariane 5 explosion
 Millions of $$ lost from exception

handling bug

Intel Pentium FDIV fault
 public relations nightmare
 11

Infamous software failures

Boeing A220
 Engines failed after software updated
allowed excessive vibrations

Boeing 737 Max
 Crashed due to overly aggressive software
flight overrides

12

Infamous software failures

Toyota brakes
 Dozens dead, thousands of crashes

Heathcare.gov website
 Crashed repeatedly on launch – never load tested

13

We need our software to be
dependable.

14

Testing is one way to assess dependability.

Software testers try to find faults before the
faults find users.

Software failures are expensive!
NIST report, “The Economic Impacts of Inadequate Infrastructure for
Software Testing” (2002)
 - Inadequate software testing cost US alone between $22 and $59 billion annually

Huge losses due to web app failures
 - Financial services: $6.5 million per hour (just in US!)
 - Credit card sales apps: $2.4 million per hour (in US)

Symantec (2007) says that most security vulnerabilities
are due to faulty software.

15

Costly software failures

Northeast blackout
 2003; 50 million people, $6 billion USD

lost because of power overload (alarm
system failed)

Amazon BOGO no-go
 Dec 2006; amazon.com’s BOGO

offer turned into a double discount
16

World-wide monetary loss due to poor software
testing and maintenance is staggering!

17

Testing in the 21st century

More safety critical, real-time software
Embedded software is ubiquitous
Enterprise applications means bigger programs, more users [& higher impact!]

Paradoxically, free software increases our expectations.

18

Testing in the 21st century

Security is now all about software faults
 - secure software is reliable software
The web offers new deployment platform
 - Very competitive and very available to more users
 - Web apps are distributed and must be highly reliable
And now we have software that relies on artificial intelligence
 (unclear if and to what extent existing techniques scale)

19

Testing in the 21st century
The potential for detrimental impact is increasing by the day.

Software used in life-altering scenarios
 - criminal justice
 - healthcare

But is this software being adequately tested?
 (recent article points out some aren’t!)

https://ieeexplore.ieee.org/document/9447421
20

https://ieeexplore.ieee.org/document/9447421

Industry desperately needs our
interventions and help!

21

Industry

The true cost of a software failure

Analysis of news articles in 2016 revealed:
 606 reported software failures
 Impacted half the world’s population
 Cost a combined $1.7 trillion US dollars

Poor software can have real ramifications.

Also…it’s super frustrating.
22

So what does this mean?

Software testing is getting more important.

What are we trying to do when we test?
What are our goals?

23

Validation & Verification (IEEE)

Validation: The process of evaluating software at the end of software development
to ensure compliance with intended usage

Verification: The process of determining whether the products of a given phase of
the software development process fulfills the requirements established during the
previous phase

IV&V stands for “independent verification & validation”.

24

Test goals based on test process maturity

Level 0: There’s no difference between testing and debugging

Level 1: The purpose of testing is to show correctness

Level 2: The purpose of testing is to show that the software doesn’t work.

Level 3: The purpose of testing is not to prove anything specific, but to reduce
the risk of using the software

Level 4: Testing is a mental discipline that helps all IT professionals develop
higher quality software

25

Level 0 explained
Testing = debugging

Does not distinguish between incorrect behavior and mistakes in the program

Does not help develop software that is reliable and safe

This is (unfortunately) what we typically learn as undergraduate CS majors.

26

Level 1 explained
Purpose is to show correctness

Correctness is impossible to achieve
What do we know if no failures?
 - Good software or bad/not enough tests?
Test engineers have no:
 - Strict goal
 - Real stopping rule
 - Formal test technique
 - Test managers are powerless

This is what hardware engineers often expect.
27

Level 2 explained
Purpose is to show failures

Looking for failures is a negative activity

Puts testers and developers into an adversarial relationship

What if there are no failures?

This describes most software companies.

How can we move to a team approach??
28

Level 3 explained
Testing can only show the presence of failures

Whenever we use software, we incur some risk

Risk may be small and consequences unimportant

Risk may be great and consequences catastrophic

Testers and developers cooperate to reduce risk

This describes handful of “enlightened” software companies.
29

Level 4 (a mental discipline) explained
Testing is only one way to increase quality

Test engineers can become technical leaders of project

Primary responsibility to measure and improve software quality

Their expertise should help the developers

This is the way “traditional” engineering works.
30

Where are you?
Are you at level 0, 1, or 2?

Is your organization at work at level 0, 1, or 2?

Or maybe 3?

We hope to teach you to become “change agents”

who advocate for level 4 thinking.
31

Tactical goals: why each test?
If you don’t know why you’re conducting each test,

it won’t be very helpful.

Written test objectives and requirements must be documented
What are your planned coverage levels?
How much testing is enough?
Common objective = spend the budget … test until the ship
date…
 - sometimes called the “date criterion”

32

Why each test?
If you don’t start planning for each test when the functional

requirements are formed, you’ll never know why you’re
conducting the test.

1980: ”The software shall be easily maintainable.”

Threshold reliability requirements?

What fact does each test try to verify?
Requirements definition teams need testers!

33

Cost of not testing
Poor program managers might say:

“Testing is too expensive.”

Testing is the most time consuming and expensive part of software
development
Not testing is even more expensive
If we have too little testing effort early, the cost increases
Planning for testing after development is prohibitively expensive

34

Cost of late testing
60

50

40

30

20

10

0

Requirements

Prog / U
nit Te

st
Design

Integration Test

Fault origin (%)

Fault detection (%)

Unit cost (X)

Software Engineering Institute; Carnegie Mellon University; Handbook CMU/SEI-96-HB-002

Assume $1000 unit cost, per fault, 100 faults

$6K

$13K

$20K

$360K

$250K

Syste
m Test

Post-D
eploym

ent

$100K

35

Summary: Why do we test software?

A tester’s goal is to eliminate faults as early as possible.

 Improve quality

 Reduce cost

 Preserve customer satisfaction

36

