
Introduction to Software Testing
Spikes & Refactoring (KO Ch. 3)

Software Testing & Maintenance
SWE 437
http://go.gmu.edu/swe437

Dr. Brittany Johnson-Matthews
(Dr. B for short)

http://go.gmu.edu/swe437

Overview
Exploring a potential solution
Changing design in a controlled manner
Taking the new design further

Most excellent designs are the result of a continuous process of
simplification and refinement

The problem from Ch. 2
Existing design replaced variables via simple matching

-For all variables v, replace ${v} with its value:
result = result.replaceAll (regex, entry.getValue())

Failing test from chapter 2: Sets the value to “${one}, ${two}, ${three}”

Tweaking the current design won’t make this test pass

@Test
public void variablesGetProcessedJustOnce() throws Exception {
 template.set (“one”, “${one}”);
 template.set (“two”, “${three}”);
 template.set (“three”, “${two}”);
 assertTemplateEvaluatesTo (“${one}, ${three}”, ${two});
}

regexp

blows up

What is a spike?
A detour to learn something new

-Package, details on API, etc.
-Whether proposed design will work

Spikes are experimental in nature

Self education – increase knowledge, skills, or abilities

Exploring a potential solution
Break the templates into “segments”
Prototyping with spikes

-A spike is a detour to learn
-In the template example, we learn more about using regex

Learn by writing tests (learning tests)
-Need to figure out an API?

-Write some tests that use the API
-RegexLearningTest on Ammann’s website, from section 3.3
https://cs.gmu.edu/~pammann/Koskela/code/RegexLearningTest.java

Example spike for learning an API
-Note that Koskela thought find() would count occurrences
-He learned it breaks strings into pieces

Learn on a short detour, then apply

https://cs.gmu.edu/~pammann/Koskela/code/RegexLearningTest.java

Controlled changes to design
Creating an alternative implementation

Start with the “low hanging fruit”
-TDD Development of Template parser

Remove duplication from tests
-Refactoring is always important

Controlled changes to design
Apply learning from the spike

-Final code version (not Segment class, originally a String)

 private void append(String segment, StringBuilder result) {

 if (isVariable(segment) { evaluateVariable(segment, result); } // dispatching L

 else { result.append(segment);}
}

-Koskela refactors substantially
-TemplateParse.java

http://cs.gmu.edu/~pammann/Koskela/code/TemplateParse.java

Controlled changes to design
Switching over safely

Adopting the new implementation
-Recoding the evaluate() method

Cleaning up by extracting methods (more refactoring)
-Pull out the old stuff that’s no longer relevant

Result is new Template class (Template.java)

No new functionality, but definitely improved!

http://cs.gmu.edu/~pammann/Koskela/code/Template.java

Improving the new design
Keeping things compatible

Build on existing functionality
Refactor logic into objects

Motivation for segment class
Make the switchover
Getting caught by safety nets

Don’t forget your exceptional behavior!
Delete dead code + further clean up

Test sets make requirements concrete.

Core Idea
Use regexp to break the following string:
 “${greeting} ${fname},

 Thank you for your interest in ${product}.”

Into the following 5 pieces:

 “${greeting}” ”${fname}”

 “,

 Thank you for your interest in “ “${product}” “.”

Now the variables can easily be identified and replaced

 regex will not explode if values have ‘$’, or ‘{‘, or ‘}’

Practice, practice, practice!
Chapter 3 has a lot of details that you should explore on your own.

I suggest going through the exercise with the code and JUnit

A spike for you!

Code location:

https://cs.gmu.edu/~pammann/Koskela/code/

Template.java, Segment, PlainText, Variable

’

https://cs.gmu.edu/~pammann/Koskela/code/
http://cs.gmu.edu/~pammann/Koskela/code/Template.java
http://cs.gmu.edu/~pammann/Koskela/code/Segment.java
http://cs.gmu.edu/~pammann/Koskela/code/PlainText.java
http://cs.gmu.edu/~pammann/Koskela/code/Variable.java

