
Introduction to Software Testing
Acceptance TDD Explained (KO Ch. 9)

Software Testing & Maintenance
SWE 437
http://go.gmu.edu/swe437

Dr. Brittany Johnson-Matthews
(Dr. B for short)

http://go.gmu.edu/swe437

Overview
“In the spacecraft business no design can survive the review process without

first answering the question—how are we going to test this thing?”

—Glen Alleman

Today we're gonna talk about:
User stories
From user stories to acceptance tests
The overall process

2

More on user stories
Format of a story

free form
or structured: As a (role) I want (functionality) so that (benefit)
often written on index cards

Card, conversation, confirmation (CCC)
Power of storytelling

User view of what is needed, but not how it is provided
A user story represents a requirement, and creates a promise to communicate with the customer

“Storytelling reveals meaning without defining it.”
– Hannah Arendt

3

Example user stories
Support technician
sees customer’s
history on-screen at
the start of a call

Application
authenticates
with the HTTP
proxy server

The system prevents
user from running
multiple instances of
the application
simultaneously

State what,
NOT how

A user story is valuable because it enables engineers to add functionality
4

Acceptance tests (9.2)
Create tests based on user stories

Properties of acceptance tests include:
Owned by customer
Written together with the customer, developer, and tester
Focus on the what, not the how
Expressed in language of the problem domain – user’s vocabulary
Concise, precise, and unambiguous

5

In-class Exercise

6

Discuss
acceptance tests

Consider the 3 user stories on previous slide (pg. 326)
Discuss whether and how they satisfy these properties

Example acceptance tests
Support technician sees
customer’s history on-
screen at the start of a
call

- Simulate a call with Fred’s account number
and verify that Fred’s info can be read
from the screen

- Verify that the system displays a valid
error message for non-existing account
number

- Omit the account number in the incoming
call completely and verify that the system
displays the text “no account number
provided” on the screen

Fig. 9.1

Fig. 9.27

Acceptance tests – what vs. how
1. Go to the “new transaction” screen, fill in

the required details, and save the entry;
verify that the transaction shows up on
the list

2. Select the “delete” checkbox for the newly
created entry, click “delete all marked
transactions,” and verify they’re all gone

3. Create multiple transactions, check
several of them and delete; verify that all
selected transactions were indeed deleted

In-class discussion:
What is wrong with these tests?

- Too much HOW for users
- Not in users’ vocabulary

Trimmed to focus on WHAT

1. Try creating new
order

2. Try deleting an order
3. Try deleting multiple

orders

8

Acceptance tests – what vs. how
Support technician sees
customer’s history on-
screen at the start of a
call

- Simulate a call with Fred’s account number
and verify that Fred’s info can be read from
the screen

- Verify that the system displays a valid error
message for non-existing account number

- Omit the account number in the incoming call
completely and verify that the system
displays the text “no account number
provided” on the screen

Fig. 9.1

Fig. 9.2

Too detailed

Trimmed version of tests

1. Valid account number
2. Non-existing account

number
3. No account number

provided
9

Understanding the process (9.3)
The acceptance TDD cycle

1. Pick a story
2. Write tests for the story
3. Automate the tests
4. Implement the functionality

Pick a user
story

Write tests

Automate
tests

Implement
functionality A process with feedback

10

Step 1: Pick a story
The acceptance TDD cycle

1. Pick a story (which story?)
- Most important
- Business value
- Technical risk
- Amount of programming

2. Write tests for the story
3. Automate the tests
4. Implement the functionality

11

Step 2: Write tests
The acceptance TDD cycle

1. Pick a story
2. Write tests for the story

- Involve the customer
- Iterate
- Keep abstract as long as possible
- Get ahead of refactoring

3. Automate the tests
4. Implement the functionality

12

Step 3: Automation
The acceptance TDD cycle

1. Pick a story
2. Write tests for the story
3. Automate the tests

- Start with a table format
- Translate to implementation
- Postpone use of tools

4. Implement the functionality

Action Parameters
Place call 555-1234, account 123456
Accept call 555-1234
Verify text 123456
Verify text Cory Customer

13

Step 4: Implementation
The acceptance TDD cycle

1. Pick a story
2. Write tests for the story
3. Automate the tests
4. Implement the functionality
 - This is done using TDD
 - Each A-TDD test leads to multiple small tests
 - As we get small tests to pass, we’re closer to A-test passing

14

Acceptance tests in agile
Acceptance test

fails
User story TDD test

Add functionality

Acceptance test
passes

Refactor

Refactor

Customer must approve
acceptance test passing

15

In-class Exercise

16

Write two or three acceptance tests for the following user story

Follow the guidelines in Chapter 9

Customer orders
lunch at a kiosk

Acceptance testing as a team activity
Defining the customer role

Representative of end users
Possible several people

Characteristics of customer role
Shared interest in success
Authority to make decisions
Ability to understand implications
Ability to explain domain

Key is to verify against target domain
17

Acceptance testing team
Who writes tests with the customer?

Tester?
Developer?
Requirements expert?
Everybody?

How many testers do we need?
One or two developers per tester
Tester is a role, not a job title
All developers should be testers

More contributors is better

18

Benefits of acceptance testing
Definition of “done”

Customer must agree it’s done
Knowing where we are
Knowing when to stop
Test criteria satisfied

Cooperative work

Both unit and acceptance tests are needed!

Trust and commitment

Specification by example
This is a big one!

Filling the gap
Unit tests are not the same as acceptance tests

19

What exactly are we testing? (9.6)
Should we test against the UI?

Do whatever is easier long term
UIs are often in the way
Good tools can automate tests through and around the UI
Performance might matter

Should we stub our system?
Sufficiently close to the real thing
Sometimes stubs are necessary

Should we test business logic directly?
Of course – it’s what the customer cares about

Tests are like votes – they need to run early and often.
20

