
Introduction to Software Testing
Input Space Partition Testing (Ch. 6.1)

Software Testing & Maintenance
SWE 437
http://go.gmu.edu/swe437 

Dr. Brittany Johnson-Matthews
(Dr. B for short)

http://go.gmu.edu/swe437


Benefits of ISP

Equally applicable at several levels of testing
Unit
Integration
System

Easy to apply with no automation
Can adjust the procedure to get more or fewer tests
No implementation knowledge is needed

Just the input space

2



Input domains
Input domain: all possible inputs to a program

Most input domains are effectively infinite

Input parameters define the input domain
Parameter values to a method
Data from a file
Global variables
User inputs

We partition input domains into regions (called blocks)
Choose at least one value from each block

3

Input domain:  Alphabetic letters
Partitioning characteristic: Case of letter

Block 1: upper case
Block 2: lower case



Partitioning input domains
Domain D
Partition scheme q of D
The partition q defines a set of blocks, Bq = b1, b2, …, bq

The partition must satisfy two properties:

   1. Blocks must be pairwise disjoint                2. Together the blocks cover the
     (no overlap)                                       domain D (complete)

4

b1 b2

b3

b1 b2

b3



In-class Exercise

5

Practice partitioning for integers

Design a partitioning for all integers

That is, partition integers into blocks such that each block seems to be equivalent in terms of testing

Make sure your partition is valid:
1) Pairwise disjoint

2) Complete



Characteristics & Partitions
Example characteristics

Whether X is null
Order of the list F (sorted, inverse sorted, arbitrary, …)
Min separation of two aircraft
Input device (DVD, CD, VCR, computer, …)
Hair color, height, major, age

Partition characteristic into blocks
Each value in a block should be equally useful for testing

Choose a value from each block
Form tests by combining one value from each characteristic

6



Choosing partitions
Defining partitions is not hard, but is easy to get wrong.
Consider the characteristic ”order of elements in list F”

7

b1 = sorted in ascending order
b2 = sorted in descending order
b3 = arbitrary order

but … something’s fishy …

Length 1 : [ 14 ]

This list is in all three blocks
That is, disjointness is not satisfied

Design blocks for that characteristic

Can you spot the problem?

Can you think of a solution?

Solution:
Two characteristics that address 

just one property

C1: List F sorted ascending
  - c1.b1 = true
  - c1.b2 = false
C2: List F sorted descending
  - c2.b1 = true
  - c2.b2 = false



In-class Exercise

8

Creating an Input Domain Model (IDM)

Pick one of the programs from Chapter 1 (findLast, numZero, etc).

Create an IDM for the program you chose.



Modeling the input domain
Step 1: Identify testable functions

Step 2: Find all inputs, parameters, & characteristics

Step 3: Model the input domain

Step 4: Apply a test criterion to choose combinations of values (6.2)

Step 5: Refine combinations of blocks into test inputs

9

Move from imp level to  
design abstraction level

Entirely at the design 
abstraction level

Back to the implementation 
abstraction level



Steps 1 & 2

10

Identify testable functions

Find inputs, parameters, characteristics



Example IDM (syntax)
Method triang() from class TriangleType on the book website:

- https://www.cs.gmu.edu/~offutt/softwaretest/java/Triangle.java
- https://www.cs.gmu.edu/~offutt/softwaretest/java/TriangleType.java

public enum Triangle { Scalene, Isosceles, Equilateral, Invalid }
public static Triangle triang (int Side1, int Side2, int Side3)
// Side1, Side2, and Side3 represent the lengths of the sides of a triangle
// Returns the appropriate enum value

IDM for each parameter is identical 
Characteristic: Relation of side with zero
Blocks: negative; positive; zero

11

https://www.cs.gmu.edu/~offutt/softwaretest/java/Triangle.java
https://www.cs.gmu.edu/~offutt/softwaretest/java/TriangleType.java


Example IDM (behavior)
Method triang() again:

- https://www.cs.gmu.edu/~offutt/softwaretest/java/Triangle.java

- https://www.cs.gmu.edu/~offutt/softwaretest/java/TriangleType.java

Three parameters represent a triangle

The IDM can combine all parameters
Characteristic: type of triangle

Blocks: Scalene; Isosceles; Equilateral; Invalid
12

https://www.cs.gmu.edu/~offutt/softwaretest/java/Triangle.java
https://www.cs.gmu.edu/~offutt/softwaretest/java/TriangleType.java


In-class Exercise

13

Functions, parameters, and characteristics

public boolean findElement (List list, Object element)
    // Effects: if list or element is null throw NullPointerException

 // else return true if element is in the list, false otherwise

Identify functionalities, parameters, and characteristics for findElement()



Steps 1 & 2 – IDM 

14

public boolean findElement (List list, Object element)
// Effects: if list or element is null throw NullPointerException
//  else return true if element is in the list, false otherwise

Parameters and Characteristics

Characteristics based on syntax :
   list is null (block1 = true, block2 = false)
   list is empty (block1 = true, block2 = false)

Two parameters : list, element

Characteristics based on behavior :
   number of occurrences of element in list
      (0, 1, >1)
   element occurs first in list
      (true, false)
   element occurs last in list
      (true, false)



Step 3

15

Model input domain

Partition characteristics into blocks

Choose values for blocks



triang(): relation of side with zero

16

3 inputs, each has the same partitioning

Maximum of 3*3*3 = 27 tests
Some triangles are valid, some are invalid
Refining the characterization can lead to more tests

Characteristic b1 b2 b3

q1 = “Relation of Side 1 to 0” positive equal to 0 negative

q2 = “Relation of Side 2 to 0” positive equal to 0 negative

q3 = “Relation of Side 3 to 0” positive equal to 0 negative



Refining triang()’s IDM

17

Second characterization of triang()’s inputs

Maximum of 4*4*4 = 64 tests
Complete only because the inputs are integers

Characteristic b1 b2 b3 b4

q1 = “Refinement of q1” greater than 1 equal to 1 equal to 0 negative

q2 = “Refinement of q2” greater than 1 equal to 1 equal to 0 negative

q3 = “Refinement of q3” greater than 1 equal to 1 equal to 0 negative

Characteristic b1 b2 b3 b4

Side1 5 1 0 -5



Refining triang()’s IDM

18

Second characterization of triang()’s inputs

Maximum of 4*4*4 = 64 tests
Complete only because the inputs are integers

Characteristic b1 b2 b3 b4

q1 = “Refinement of q1” greater than 1 equal to 1 equal to 0 negative

q2 = “Refinement of q2” greater than 1 equal to 1 equal to 0 negative
q3 = “Refinement of q3” greater than 1 equal to 1 equal to 0 negative

Characteristic b1 b2 b3 b4

Side1 5 1 0 -52 -1

Test boundary conditions



triang(): type of triangle

19

Geometric characterization of triang()’s inputs

Equilateral can also be isosceles!
We need to refine the example to make characteristics valid
Correct geometric characterizations of triang()’s inputs

Characteristic b1 b2 b3 b4
q1 = “Geometric  Classification” scalene isosceles equilateral invalid

What’s wrong with this 
partitioning?

Characteristic B1 b2 b3 b4
q1 = “Geometric  Classification” scalene Isosceles, not 

equilateral equilateral invalid



Values for triang()

20

Characteristic b1 b2 b3 b4

Triangle (4,5,6) (3, 3, 4) (3, 3, 3) (3, 4, 8)



Yet another triang() IDM

21

A different approach would be to break the geometric characterization into four separate 
characteristics

Four characteristics for triang()

Use constraints to ensure that
- Equilateral = True implies Isosceles = True
- Valid = False implies Scalene = Isosceles = Equilateral = False

Characteristic b1 b2

q1 = “Scalene” True False

q2 = “Isosceles” True False

q3 = “Equilateral” True False

q4 = “Valid” True False



Advice for creating IDMs

22

More characteristics è more tests
More blocks è more tests
Do not use program source
Design more characteristics with fewer blocks

- Fewer mistakes
- Fewer tests

Choose values strategically
- valid, invalid, special values
- Explore boundaries
- Balance the number of blocks in the characteristics

Characteristic b1 b2

q1 = “Scalene” True False

q2 = “Isosceles” True False

q3 = “Equilateral” True False

q4 = “Valid” True False



In-class Exercise

23

Proper partitioning?

Which two properties must be satisfied for 
an input domain to be properly partitioned?


