
Introduction to Software Testing
Input Space Partition Testing (Ch. 6.2)

Software Testing & Maintenance
SWE 437
http://go.gmu.edu/swe437

Dr. Brittany Johnson-Matthews
(Dr. B for short)

http://go.gmu.edu/swe437

Modeling the input domain
Step 1: Identify testable functions

Step 2: Find all inputs, parameters, & characteristics

Step 3: Model the input domain

Step 4: Apply a test criterion to choose combinations of values (6.2)

Step 5: Refine combinations of blocks into test inputs

2

Move from imp level to
design abstraction level

Entirely at the design
abstraction level

Back to the implementation
abstraction level

Modeling the input domain
Step 1: Identify testable functions

Step 2: Find all inputs, parameters, & characteristics

Step 3: Model the input domain

Step 4: Apply a test criterion to choose combinations of values (6.2)

Step 5: Refine combinations of blocks into test inputs

3

Move from imp level to
design abstraction level

Entirely at the design
abstraction level

Back to the implementation
abstraction level

Step 4 – Choosing Combinations of Values

After partitioning characteristics into blocks, testers design tests by combining
blocks from different characteristics

3 characteristics: A, B, C
Three blocks each: A = a1, a2, a3; B = b1, b2, b3; C = c1, c2, c3

A test starts by combining one block from each characteristic
Then values are chosen to satisfy the combinations

We use criteria to choose effective combinations

4

All Combinations Criterion (ACoC)
The most obvious criterion is to choose all combinations.

5

All Combinations (ACoC) : All combinations of blocks from all characteristics must be used.

a1 b1 c1 a2 b1 c1 a3 b1 c1
a1 b1 c2 a2 b1 c2 a3 b1 c2
a1 b1 c3 a2 b1 c3 a3 b1 c3
a1 b2 c1 a2 b2 c1 a3 b2 c1
a1 b2 c2 a2 b2 c2 a3 b2 c2
a1 b2 c3 a2 b2 c3 a3 b2 c3
a1 b3 c1 a2 b3 c1 a3 b3 c1
a1 b3 c2 a2 b3 c2 a3 b3 c2
a1 b3 c3 a2 b3 c3 a3 b3 c3

All Combinations Criterion (ACoC)
Number of tests is the product of the number of blocks in each characteristic:

The syntax characterization of triang()
-Each side: >1, 1, 0, <1
-Results in 4*4*4 = 64 tests

Most form invalid triangles

How can we get fewer tests?
6

P Q
i=1(Bi)

In-class Exercise

7

All Combinations Criterion (ACoC)

Consider our previous example.

3 characteristics: A, B, C
Three blocks each: A = a1, a2, a3; B = b1, b2, b3; C = c1, c2, c3

How many tests do we need to satisfy ACoC?

In-class Exercise

8

All Combinations Criterion (ACoC)

Consider our previous example.

3 characteristics: A, B, C
Three blocks each: A = a1, a2, a3; B = b1, b2, b3; C = c1, c2, c3

How many tests do we need to satisfy ACoC?
3 * 3 * 3 = 27 tests

ISP Criteria – Each Choice (ECC)
We should try at least one value from each block

Number of tests is the number of blocks in the largest characteristic:

9

Each Choice Coverage(ECC) : One value from each block for each
characteristic must be used in at least one test case.

Max Q
i=1(Bi)

In-class Exercise

10

Each Choice Criterion (ECC)

3 characteristics: A, B, C
Three blocks each: A = a1, a2, a3; B = b1, b2, b3; C = c1, c2, c3

1. How many tests do we need (with ECC)?
2. Write the (abstract) tests.

In-class Exercise

11

Each Choice Criterion (ECC)

3 characteristics: A, B, C
Three blocks each: A = a1, a2, a3; B = b1, b2, b3; C = c1, c2, c3

1. How many tests do we need (with ECC)?
Max # of blocks is 3 à minimum of 3 tests

2. Write the (abstract) tests.
(a1, b1, c1); (a2, b2, c2); (a3, b3, c3)

ISP Criteria – Base Choice (BCC)
ECC is simple, but very few tests

The base choice criterion recognizes that
-Some blocks are more important than others
-Using diverse combinations can strengthen testing

Let testers bring in domain knowledge of the program

Number of tests is one base test + one test for each “non-base” other block:
12

Base Choice Coverage(BCC) : A base choice block is chosen for each characteristic,
and a base test is formed by using the base choice for each characteristic.

Subsequent tests are chosen by holding all but one base choice constant and using
each non-base choice in each other characteristic.

1 + åQ
i=1 (Bi -1)

Base choice considerations
The base test must be feasible

-That is, all base choices must be compatible

Base choices can be
-Most likely from an end-use point of view
-Simplest
-Smallest
-First in some ordering

Happy path tests often make good base choices
The base choice is a crucial design decision

-Test designers should document why the choices were made

13

In-class Exercise

14

Base Choice Criterion (BCC)

Write BCC tests for our previous example.

3 characteristics: A, B, C
Three blocks each: A = a1, a2, a3; B = b1, b2, b3; C = c1, c2, c3

1. How many tests do we need?
2. Pick base values and write one base test

3. Write remaining tests

In-class Exercise

15

Base Choice Criterion (BCC)

3 characteristics: A, B, C
Three blocks each: A = a1, a2, a3; B = b1, b2, b3; C = c1, c2, c3

1. How many tests do we need?
1 + 2 + 2 + 2 = 7 tests

2. Pick base values and write one base test
base values à a2, b3, c1
base test à (a2, b3, c1)

3. Write remaining tests
(a2,b2, c1); (a2, b1, c1); (a2, b3, c2);

(a2, b3, c3); (a1, b3, c1); (a3, b3, c1)

ISP Criteria – Multiple Base Choice (MBCC)
We sometimes have more than one logical base choice

If M base tests and mi base choices for each characteristic:

16

Multiple Base Choice Coverage (MBCC) At least one, and possibly more, base choice
blocks are chosen for each characteristic, and base tests are formed by using each
base choice for each characteristic at least once. Subsequent tests are chosen by

holding all but one base choice constant for each base test and using each non-base
choice in each other characteristic

M + åQ
i=1 (M * (Bi - mi))

For our example… two base tests: a1, b1, c1 a2, b2, c2
Tests from a1, b1, c1: a1, b1, c3; a1, b3, c1; a3, b1, c1
Tests from a2, b2, c2: a2, b2, c3; a2, b3, c2; a3, b2, c2

ISP Coverage Criteria Subsumption

17

Each Choice
Coverage

ECC

All Combinations
Coverage

ACoC

T-Wise
Coverage

TWC

Multiple Base Choice
Coverage

MBCC

Pair-Wise
Coverage

PWC

Base Choice
Coverage

BCC

Input Space Partitioning Summary
Fairly easy to apply, even with no automation

Convenient ways to add more or less testing

Equally applicable to all levels of testing – unit, class, integration, system, etc.

Based only on the input space of the program, not the implementation

Simple, straight-forward, effective, and widely used.
18

