## Introduction to Software

## Graph Coverage Criteria(Ch.

Software Testing \& Maintenance SWE 437


Dr. Brittany JohnsonMatthews
(Dr. B for short)

## Testing \& Covering Graphs (7.2)

We use graphs in testing as follows:
-Develop a model of the software as a graph
-Require tests to visit or tour specific sets of nodes, edges, or subpaths

Test requirements (TR): Describe properties of test paths
Test Criterion: Rules that define test requirements
Satisfaction: Given a set $T R$ of test requirements for a criterion $C$, a set of tests $T$ satisfies $C$ on a graph if and only if for every test requirement in $T R$, there is a test path in path $(T)$ that meets the test requirement tr.
Structural Coverage Criteria: Defined on a graph just in terms of nodes and edges

## Node and Edge Coverage

The first (and simplest) two criteria require that each node and edge in a graph be executed.

> Node Coverage (NC) : Test set $T$ satisfies node coverage on graph G iff for every syntactically reachable node $n$ in $N$, there is some path $p$ in path( $T$ ) such that $p$ visits $n$.

This statement is a bit cumbersome, so we abbreviate it in terms of the set of test requirements.

Node Coverage (NC) : TR contains each reachable node in $\mathbf{G}$.

## Node and Edge Coverage

Edge coverage is slightly stronger than node coverage

## Edge Coverage (EC) : TR contains each reachable path of length up to 1 , inclusive, in $\mathbf{G}$

The phrase "length up to 1" allows for graphs with one node and no edges
NC and EC are only different when there is an edge and another subpath between a pair of nodes (as in an "if-else" statement)


$$
\begin{array}{r}
\left.\begin{array}{r}
\text { Node CoverageT:R? } R=\{1,2,3\} \\
\text { Test Path }=[1,2,3] \\
\text { Edge CoverageT:R? }:=\{(1,2),(1,3),(2,3) \\
\text { Test Paths }=[1,2,3] \\
{[1,3]}
\end{array}\right\}
\end{array}
$$

## In-class Exercise



## Graph Criteria EC

Answer the following questions for the graph on the left

1. List test paths that satisfy edge coverage.
2. Write the set of test requirements for edgepair coverage.
3. List test paths that satisfy edge-pair coverage.
4. Write the set of test requirements for prime path coverage.
5. List test paths that satisfy prime path

## In-class Exercise



## Graph Criteria EC

Answer the following questions for the graph on the left

1. List test paths that satisfy edge coverage.
$[1,2,4]$
$[1,3,5,6,3,4]$
$[1,3,5,7]$

## Node and Edge Coverage

A graph with only one node will not have any edges


It may seem trivial, but formally, Edge Coverage needs to require Node Coverage on this graph

Otherwise, Edge Coverage will not subsume Node Coverage -So we define "length up to $\mathbf{1 "}$ instead of simply "length 1"
We have the same issue with graphs that have only one edge - for EdgePair Coverage...

## Covering Multiple Edges

Edge-pair coverage requires pairs of edges, or subpaths of length 2

## Edge-Pair Coverage (EPC) : TR contains each

 reachable path of length up to 2, inclusive, in GThe phrase "length up to $\mathbf{2 "}^{\text {" is used to include graphs that have less than } 2 \text { edges }}$


$$
\begin{aligned}
& \text { Edge-Pair Coverage : ? } \\
& \text { TR =\{[1,4,5], }[\mathbf{1 , 4 , 6},[\mathbf{2 , 4 , 5 ]}, \\
& {[\mathbf{2 , 4 , 6}],[\mathbf{3 , 4 , 5},[3,4,6]\}}
\end{aligned}
$$

The logical extension is to require all paths...

## In-class Exercise



## Graph Criteria EPC

Answer the following questions for the graph on the left

1. List test paths that satisfy edge coverage.
2. Write the set of test requirements for edgepair coverage.
3. List test paths that satisfy edge-pair coverage.
4. Write the set of test requirements for prime path coverage.
5. List test paths that satisfy prime path

## In-class Exercise



## Graph Criteria EPC

Answer the following questions for the graph on the left

1. List test paths that satisfy edge coverage.
2. Write the set of test requirements for edgepair coverage.
3. List test paths that satisfy edge-pair coverage.

TR = \{[1, 2, 4], [1, 3, 4], [1, 3, 5], [3, 5, 6], [5, 6, 3], [6, 3, 4], [6, 3, 5], [3, 5, 7]\}

## Covering Multiple Edges

## Complete Path Coverage (CPC): TR contains all paths in

G.

Unfortunately, this is impossible if the graph has a loop, so a weak compromise make the tester decide which paths:

> Specified Path Coverage (SPC): TR contains a set S of test paths, where $S$ is supplied as a parameter.

## Covering Multiple Edges



| $\operatorname{TR}=\{1,2,3,4,5,6,7\}$ |
| :--- |
| Node Coverage |
| Test Paths: $[1,2,3,4,7][1,2,3,5,6,5,7]$ |

## Edge Coverage

$\operatorname{TR}=\{(1,2),(1,3),(2,3),(3,4),(3,5),(4,7),(5,6),(5,7),(6,5)\}$ Test Paths: $[1,2,3,4,7][1,3,5,6,5,7]$

## Edge-Pair Coverage

$T R=\{[1,2,3],[1,3,4],[1,3,5],[2,3,4],[2,3,5],[3,4,7]$,
[3,5,6], [3,5,7], [5,6,5], [6,5,6], [6,5,7] \}
Test Paths: [ 1, 2, 3, 4, 7 ] [ 1, 2, 3, 5, 7 ] [ 1, 3, 4, 7 ]
$[1,3,5,6,5,6,5,7]$
Complete Path Coverage
Test Paths: [ 1, 2, 3, 4, 7 ] [ 1, 2, 3, 5, 7 ] [ 1, 2, 3, 5, 6, 5, 7 ] [ 1, $2,3,5,6,5,6,5,7][1,2,3,5,6,5,6,5,6,5,7] \ldots$

## Handling Loops in Graphs

If a graph contains a loop, it has an infinite number of paths.

Thus CPC is not feasible.

SPC is not satisfactory because the results are subjective and vary with the tester.

Attempts to "deal with" loops:
-1970s: Execute cycles once
-1980s: Execute each loop, exactly once
-1990s: Execute loops 0 times, once, more than once -2000s: Prime paths (touring, sidetrips, detours)

## Simple Paths \& Prime Paths

Simple path: A path from node ni to nj is simple if no node appears more than once, except possible the first and last nodes are the same
-No internal loops
-A loop is a simple path
Prime path: A simple path that does not appear as a proper subpath of any othelk simple path


Simple Paths : $[1,2,4,5],[1,3,4,2],[1,3,4,5],[1,2,4],[1,3,4]$,
[2,4,2], [2,4,5], [3,4,2], [3,4,5], [4,2,4], [1,2], [1,3], [2,4], [3,4], [4,2], [4,5], [1], [2], [3], [4], [5]

Prime Paths : [1,2,4,5], [1,3,4,2], [1,3,4,5], [2,4,2], [4,2,4]

## Simple Paths \& Prime Paths

What if we change the graph?

Write down the simple
and prime paths for this
graph

Simple Paths: [1,2,4,1],[1,3,4,1],[2,4,1,2],[2,4,1,3],
[3,4,1,2], [3, 4, 1,3], [4, 1,2,4], [4, 1,3,4], [1,2,4], [1,3,4], $[2,4,1],[3,4,1],[4,1,2],[4,1,3],[1,2],[1,3],[2,4],[3,4]$, [4,1], [1], [2], [3], [4]
Prime Paths $[1,2,4,1],[1,3,4,1],[2,4,1,2],[2,4,1,3],[3,4,1,2],[3,4,1,3]$, [4, 1, 2,4], [4, 1,3,4]

## Prime Path Coverage

A simple, elegant and finite criterion that requires loops to be executed as well as skipped

## Prime Path Coverage (PPC): TR contains each prime path

 in G.Will tour all paths of length $0,1, \ldots$
That is, it subsumes node and edge coverage PPC almost, but not quite, subsumes EPC...

## In-class Exercise



## Graph Criteria PPC

Answer the following questions for the graph on the left

1. List test paths that satisfy edge coverage.
2. Write the set of test requirements for edgepair coverage.
3. List test paths that satisfy edge-pair coverage.
4. Write the set of test requirements for prime path coverage.
5. List test paths that satisfy prime path

## In-class Exercise



## Graph Criteria PPC

Answer the following questions for the graph on the left

1. List test paths that satisfy edge coverage.
2. Write the set of test requirements for edgepair coverage.
3. List test paths that satisfy edge-pair coverage.
4. Write the set of test requirements for prime path coverage.
5. List test paths that satisfy prime path

## PPC does not subsume EPC

If a node has an edge to itself (self edge), EPC requires [ $\mathbf{n}, \mathbf{n}, \mathbf{m}$ ] and [ $\mathbf{m}, \mathbf{n}$, n]
[ $\mathbf{n}, \mathbf{n}, \mathbf{m}$ ] is not prime
Neither $[\mathbf{n}, \mathbf{n}, \mathbf{m}]$ nor $[\mathbf{m}, \mathbf{n}, \mathbf{n}]$ are simple paths (n\&t'ptime)

```
EPC Requirements:?
TR = {[1,2,3], [1,2,2], [2,2,3],
[2,2,2]}
```



## Prime Path Example

The previous example has 38 simple paths
Only nine prime paths $\downarrow$
Write down all 9
prime paths


## Touring, Sidetrips, and Detours

Prime paths do not have internal loops ... test paths might

Tour: A test path $p$ tours subpath $q$ if $q$ is a subpath of $p$
Tour with sidetrips: A test path $p$ tours subpath $q$ with sidetrips iff every edge in $q$ is also in $p$ in the same order
-The tour can include a sidetrip, as long as it comes back to the same node
Tour with detours: $A$ test path $p$ tours subpath $q$ with detours iff every node in $q$ is also in $p$ in the same order
-The tour can include a detour from node ni, as long as it comes back to the prime path at a successor of ni

## Sidetrips and Detours Example



## Infeasible Test Requirements

An infeasible test requirement cannot be satisfied.
-Unreachable statement (dead code)
-Subpath that can only be executed with a contradiction ( $x>0$ and $x<0$ )
Most test criteria have some infeasible test requirements
It is usually undecidable whether all test requirements are feasible
When sidetrips are not allowed, many structural criteria have more infeasible test requirements

However, always allowing sidetrips weakens the test criteria
Practical recommendation-Best Effort Touring

- Satisfy as many test requirements as possible without sidetrips
- Allow sidetrips to try to satisfy remaining test


## Simple \& Prime Path Example



Write paths
of length 0
\(\left.\begin{array}{|c|}\hline Len <br>
0_{[1]} <br>
{[2]} <br>
{[3]} <br>
{[4]} <br>
{[5]} <br>
{[6]} <br>
{[7]!} <br>

\hline\end{array}\right]\)| !' means <br> path <br> mines |
| :---: |
|  |
|  |
|  |

## Simple \& Prime Path Example



## Simple \& Prime Path Example



## Write paths of length 2

$\left.\begin{array}{|l|}\hline \begin{array}{l}\text { Len 2 } \\ {[1,2,3]} \\ {[1,3,4]} \\ {[1,3,5]} \\ {[2,3,4]} \\ {[2,3,5]} \\ {[3,4,7]!} \\ {[3,5,7]!} \\ {[3,5,6]!} \\ {[5,6,5] \star} \\ {[6,5,7]!} \\ {[6,5,6] *}\end{array} \\ \hline\end{array} \quad \begin{array}{c}{ }^{\prime \prime} \text { means } \\ \text { path cycles }\end{array}\right]$

## Simple \& Prime Path Example



Write paths of length 3

| Len 3 |
| :--- |
| $[1,2,3,4]$ |
| $[1,2,3,5]$ |
| $[1,3,4,7]!$ |
| $[1,3,5,7]!$ |
| $[1,3,5,6]!$ |
| $[2,3,4,7]!$ |
| $[2,3,5,6]!$ |
| $[2,3,5,7]!$ |

## Simple \& Prime Path Example



Write paths
of length 4

| Len 4 |
| :--- |
| $[1,2,3,4,7]!$ |
| $[1,2,3,5,7]!$ |
| $[1,2,3,5,6]!$ |

## Simple \& Prime Path Example



| Len 1 | Len 2 | Len 3 | Len 4 |
| :---: | :---: | :---: | :---: |
| [1,2] | $[1,2,3]$ | [1, 2, 3, 4] |  |
| $[1,3]$ | $[1,3,4]$ | $[1,2,3,5]$ | ( $1,2,3,4,7]$ ! $2,3,5,7]$ |
| [2, 3] | $[1,3,5]$ $[2,3,4]$ $[2,3,5]$ | [1, 3, 4, 7) | $\left(\begin{array}{l}\text { [1, } 2,3,5,7 \\ {[1,2,3,5,6]!}\end{array}\right.$ |
| [3, 4] | $[2,3,4]$ $[2,3,5]$ | [1, 3, 5, 7] ! | $\underline{[1,2,3,5,6] .}$ |
| $[3,5]$ | [ $3,4,7]$ ] | [1, 3, 5, 6] |  |
| $[4,7]$ ! | [3, 5,7$]$ ! | $[2,3,4,7]$ ! |  |
| $[5,7]$ ! | [3,5,6]! | $[2,3,5,6]$ ! |  |
| $[5,6]$ | [5,6,5] | $[2,3,5,7]$ ! |  |
| $[6,5]$ | $[6,5,7]$ ! |  |  |

Prime Paths?

## Round Trips

Round-Trip Path: A prime path that starts and ends at the same node
Simple Round Trip Coverage (SRTC): TR contains at least one round-trip path for each reachable node in $G$ that begins and ends a round-trip path.

Complete Round Trip Coverage (SRTC): TR contains all round-trip paths for each reachable node in $G$.

These criteria omit nodes and edges that are not in round trips

Thus they do not subsume edge-pair, edge, or node coverage

Graph Coverage Criteria Subsumntinn


## Graph Coverage Summary (7.17.2)

Graphs are a very powerful abstraction for designing tests

The various criteria allow lots of cost/benefit tradeoffs

These two sections are entirely at the "design abstraction level" from chapter 2

Graphs appear in many situations in software

