
Introduction to Software Testing
Logic Coverage (Ch. 8.1.1)

Software Testing & Maintenance
SWE 437
http://go.gmu.edu/swe437 

Dr. Brittany Johnson-Matthews
(Dr. B for short)

http://go.gmu.edu/swe437


Semantic Logic Coverage (8.1)
Logical expressions can come from many sources

Decisions in programs
Decisions in UML activity graphs and finite state machines

Requirements, both formal and informal
SQL queries

Covering logic expressions is required by the US Federal Aviation Administration for safety critical software
Used by other transportation industries

Used by Electronc Arts (EA) game company
FIFA, Battlefield, …

Tests are intended to choose some subset of the total number of truth assignments to the expressions
2



Logic predicates and clauses
A predicate is an expression that evaluates to a boolean value.

Predicates can contain:
boolean variables
non-boolean variables that contain >, <, ==, >=, <=, !=
boolean function calls

Internal structure is created by logical operators
¬ or ! – the negation operator
Ù or & – the and operator
Ú or | – the or operator
® – the implication operator
Å or xor – the exclusive or operator
« – the equivalence operator

A clause is a predicate with no logical operators.
3



Example
P = (a & (b | c))

P has three clauses:
 a, b, and c

Most predicates have few clauses.
88.5% have 1 clause
9.5% have 2 clauses
1.35% have 3 clauses
Only 0.65% have 4 or more !

4



Logic Coverage Criteria (8.1.1)
We use predicates in testing as follows :
Develop a model of the software as one or more predicates
Require tests to satisfy some combination of clauses

PC: Each full predicate evaluates to true and false (2 tests)

CC: Each clause in each predicate evaluates to true and false (at least 2 tests per predicate
5

Predicate Coverage (PC) : For each p in P, TR contains two 
requirements: p evaluates to true, and p evaluates to false.

Clause Coverage (CC) : For each c in C, TR contains two requirements: 
c evaluates to true, and c evaluates to false.



In-class Exercise

6

P = (a & (b | c))

Give predicate coverage (PC) and clause coverage (CC) 
abstract tests for our example predicate.

“Abstract tests” include truth assignments for each clause, for example:
a = true



Problems with PC and CC
PC does not fully exercise all the clauses, especially in the presence of short 
circuit evaluation

CC does not always ensure PC
That is, we can satisfy CC without causing the predicate to be both true and false
This is definitely not what we want !

The simplest solution is to test all combinations …
8



Combinatorial Coverage (CoC)
CoC requires every possible combination

Sometimes called Multiple Condition Coverage (MCC)

Every possible combination of truth values
2N possibilities, where N is the number of clauses

9

Combinatorial Coverage (CoC) : For each p in P, TR has 
test requirements for the clauses in Cp to evaluate to 

each possible combination of truth values.



In-class Exercise

10

P = (a & (b | c))

Give abstract tests to satisfy combinatorial coverage (CoC) for our example predicate.

Hint: There should be 8



Combinatorial Coverage (CoC)
This is simple, neat, clean, and comprehensive …
But can be expensive

– Impractical for predicates with more than 3 or 4 clauses
The literature has lots of suggestions – some confusing
The general idea is simple:

Getting the details right is hard
What exactly does “independently” mean ?
The book presents this idea as “making clauses active” …

12

Test each clause independently from the other clauses


