

Combinatorial Coverage (CoC)

This is simple, neat, clean, and comprehensive ...
But can be expensive

- Impractical for predicates with more than 3 or 4 clauses

The literature has lots of suggestions - some confusing
The general idea is simple:
Test each clause independently from the other clauses
Getting the details right is hard
What exactly does "independently" mean?
The book presents this idea as "making clauses active" ...

Active Clauses (8.1.2)

Clause coverage has a weakness : The values do not always make a difference
Consider the CC tests for $\mathrm{P}=(\mathrm{a}$ \& (b|c)):
Test 1: (true \& (true | true))
Test 2: (false \& (false | false))

Clauses b and c are ignored!
To really test the results of a clause, the clause should be the determining factor in the value of the predicate

Active Clauses - Determination

Clause c_{i} determines the value of its predicate when the other clauses have certain values.

If c_{i} is changed, the value of the predicate changes
c_{j} is called the major clause
Other clauses are minor clauses

This is called making the clause active.

Determining Predicates

$\mathbf{P}=\mathbf{A} \vee \mathbf{B}$
if $\boldsymbol{B}=$ true, p is always true.
so if $\boldsymbol{B}=$ false, A determines p.
if $\boldsymbol{A}=$ false, B determines p.

$\mathbf{P}=\mathbf{A} \wedge \mathbf{B}$
if $\boldsymbol{B}=$ false, p is always false.
so if $\boldsymbol{B}=$ true, A determines p.
if $\boldsymbol{A}=$ true, B determines p.

Goal : Find tests for each clause when the clause determines the value of the predicate.

This is formalized in a family of criteria that have subtle, but very important, differences.

In-class Exercise

Making clauses active

$$
P=(a \&(b \mid c))
$$

Write truth values for \mathbf{b} and \mathbf{c} that make clause \mathbf{a} active

$$
\text { For example: Pa : } b=\text { ?? or } c=? \text { ? }
$$

Write truth values for \mathbf{a} and \mathbf{c} that make clause \mathbf{b} active Write truth values for \mathbf{a} and \mathbf{b} that make clause \mathbf{c} active

In-class Exercise

Making clauses active

$$
P=(a \&(b \mid c))
$$

$$
\begin{aligned}
& \mathrm{Pa}:(\mathrm{b}=\text { true or } \mathrm{c}=\text { true } \\
& \quad \text { compactly: (b or } \mathrm{c}) \\
& \mathrm{Pb}:(\mathrm{a} \text { and }!\mathrm{c}) \\
& \mathrm{Pc}:(\mathrm{a} \text { and }!\mathrm{b})
\end{aligned}
$$

Write truth values for \mathbf{b} and \mathbf{c} that make clause \mathbf{a} active

$$
\text { For example: Pa : } b=\text { ?? or } c=? \text { ? }
$$

Write truth values for \mathbf{a} and \mathbf{c} that make clause \mathbf{b} active Write truth values for \mathbf{a} and \mathbf{b} that make clause \mathbf{c} active

Active Clause Coverage

Active Clause Coverage (ACC) : For each clause c_{i} in each predicate p, choose values for the other clauses to make c_{i} active
Create two tests, one where c_{i} evaluates to true and the other where c_{i} evaluates to false

This is a form of MCDC, which is required by the FAA for safety critical software.

AC(Ambiguity

Do the minor clauses have to have the same values for both tests?
Restricted ACC: They do
Correlated ACC: They do not, but the predicate has to have different values
General ACC: They do not, and the predicate does not have to have different values either
The FAA requires MCDC (modified condition decision coverage) for flight critical software
Original definition of MCDC was GACC
For years, some inspectors required RACC, some CACC.
MCDC is now equivalent to CACC.
We are skipping GACC and RACC.

(ACC Example

	\mathbf{a}	\mathbf{b}	\mathbf{c}	$\mathrm{a} \&(\mathrm{~b} / \mathrm{c})$
1	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
2	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}
3	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
4	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
5	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}
$\mathbf{6}$	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
7	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
8	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}

For a to determine the value of the predicate
P_{a} : $b=$ true or $c=$ true
So we can use ANY OF the 9 pair of rows: $(1,5),(1,6),(1,7),(2,5),(2,6),(2,7)$, $(3,5),(3,6),(3,7)$

For b to determine the value of the predicate
$\mathbf{P}_{\mathbf{b}}$: $\mathbf{a}=$ true and $\mathbf{c}=$ false
Rows 2 and 4

For c to determine the value of the predicate
$\mathbf{P}_{\mathbf{c}}$: $\mathrm{a}=$ true and $\mathrm{b}=$ false
Rows 3 and 4

Extra Credit!

Making clauses active

Pick any one of the 5 clauses (call it $\mathbf{c}_{\mathbf{i}}$)
Solve for $\boldsymbol{c}_{\mathbf{i}}$
Answer by giving truth values for the other 4 clauses that make your $\boldsymbol{c}_{\boldsymbol{i}}$ determine the value of the predicate

In-class Exercise

Making clauses active

$P=((a \& b)|c|(d \& e))$

Pick any one of the 5 clauses (call it $\mathbf{c}_{\mathbf{i}}$)
Solve for $\mathbf{c}_{\mathbf{i}}$
Answer by giving truth values for the other 4 clauses that make your $\mathbf{c}_{\mathbf{i}}$ determine the value of the predicate

$$
\begin{aligned}
& \mathrm{Pa}=\mathrm{b} \text { and }!\mathrm{c} \text { and }!(\mathrm{d} \text { and } \mathrm{e}) \\
& =b \text { and ! } c \text { and (!d or !e) } \\
& \mathrm{Pb}=\mathrm{a} \text { and }!\mathrm{c} \text { and ! }(\mathrm{d} \text { and } \mathrm{e}) \\
& =\text { a and !c and (!d or !e) } \\
& P C=!(\mathrm{a} \text { and b) and !(d and e) } \\
& =(!\text { or ! b) and (!d or !b) } \\
& P d=!(a \text { and } b) \text { and }!c \text { and } e \\
& =(!\text { a or !b) and !c and e } \\
& \mathrm{Pe}=!(\mathrm{a} \text { and } \mathrm{b}) \text { and ! } \mathrm{c} \text { and } \mathrm{d} \\
& =(!\text { a or !b) and !c and d }
\end{aligned}
$$

