Introduction to Software Testing Logic Coverage (Ch 8.1.4 \& 8.1.5)

Software Testing \& Maintenance
SWE 437

Dr. Brittany Johnson-Matthews
(Dr. B for short)

Active Clauses - Determination

Clause c_{i} determines the value of its predicate when the other clauses have certain values.

If c_{i} is changed, the value of the predicate changes
c_{j} is called the major clause
Other clauses are minor clauses

This is called making the clause active.

Determining Predicates

$\mathbf{P}=\mathbf{A} \vee \mathbf{B}$
if $\boldsymbol{B}=$ true, p is always true.
so if $\boldsymbol{B}=$ false, A determines p.
if $\boldsymbol{A}=$ false, B determines p.

$$
\begin{aligned}
& \quad \mathbf{P}=\mathbf{A} \wedge \mathbf{B} \\
& \text { if } \boldsymbol{B}=\text { false, } p \text { is always false. } \\
& \text { so if } \boldsymbol{B}=\text { true, } A \text { determines } p . \\
& \text { if } \boldsymbol{A}=\text { true, } B \text { determines } p .
\end{aligned}
$$

Goal : Find tests for each clause when the clause determines the value of the predicate.

Infeasibility \& Subsumption (8.1.4)

Consider the predicate:

$$
(a>b \wedge b>c)
$$

Now consider the predicate:

$$
(a>b \wedge b>c) \vee c>a
$$

Realize the abstract test tt into a concrete test by finding values for a, b, and c that create the truth assignments tt

Realize the abstract test ttt into a concrete test by finding values for a, b, and c that create the truth assignments ttt

Impossible!

$$
a=9, b=7, c=5
$$

Infeasible test requirements are recognized and ignored.
Recognizing infeasible test requirements is generally undecidable.
(thus usually done by hand)

Logic Criteria Subsumption

Determination Techniques

1. Informal by inspection

This is what we've been doing
Fast, but mistake-prone and does not scale-for experts
2. Tabular method

Very simple by hand
Few mistakes, slower, scales well to 5 or 6 clauses
3. Definitional method

More mathematical
Scales arbitrarily

Tabular Method

Find pairs of rows in the truth table.

	a	b	$P=a \wedge b$	Pa	Pb
1	T	T	T)	\%
2	T	F	F		-
3	F	T	F	6	
4	F	F	F		

```
For Pa, find a pair of rows where
    b}\mathrm{ is the same in both
    a is different
    P is different
```

For Pb , find a pair of rows where
a is the same in both
b is different
P is different

Tabular Method

Find pairs of rows in the truth table.

	a	b	$P=a \wedge b$	P_{a}	P_{b}
1	T	T	T	5	5
2	T	F	F		E)
3	F	T	F	-	
4	F	F	F		

| Now do the same for "or" | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | | 1 | \mathbf{a} | \mathbf{b} | $\mathrm{P}=\mathrm{a} \vee \mathrm{b}$ | P_{a} |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | \mathbf{T} | \mathbf{T} | \mathbf{T} | |
| 2 | \mathbf{T} | \mathbf{F} | \mathbf{T} | |
| 3 | \mathbf{F} | \mathbf{T} | \mathbf{T} | |
| 4 | \mathbf{F} | \mathbf{F} | \mathbf{F} | |

```
For Pa, find a pair of rows where
b is the same in both
```

```
For Pb, find a pair of rows where
```

For Pb, find a pair of rows where
a is the same in both
a is the same in both
b}\mathrm{ is different
b}\mathrm{ is different
P is different

```
    P is different
```


In-class Exercise

Tabular method

Use the tabular method to solve for Pa, Pb, and Pc . Give solutions as pairs of rows.

	\mathbf{a}	\mathbf{b}	\mathbf{c}	$\mathbf{a} \wedge(\mathrm{b} \vee \mathrm{c})$	$\mathrm{P}_{\mathbf{a}}$	P_{b}	$\mathrm{P}_{\mathbf{c}}$
$\mathbf{1}$	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}			
2	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}			
$\mathbf{3}$	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}			
4	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}			
$\mathbf{5}$	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}			
$\mathbf{6}$	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}			
$\mathbf{7}$	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}			
$\mathbf{8}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}			

In-class Exercise

Tabular method

$b \& c$ are the same, a differs, and p
differs ... thus ΠT and FTT cause a to
determine the value of p

Again, $b \& c$ are the same, so
$\Pi T F$ and FTF cause a to
determine the value of p

Finally, this third pair, TFT and FFT, also cause a to determine the value of p

For clause b, only one pair, TF and TFF cause b to determine the value of p

	a	b	C	$a \wedge(b \vee c)$	P_{a}	Pb	P_{c}
1	T	T	T	T	c		
2	T	T	F	T	\cdots	0	
3	T	F	T	T	E		5
4	T	F	F	F		v	5
5	F	T	T	F			
6	F	T	F	F	+		
7	F	F	T	F	-		
8	F	F	F	F			

Three separate pairs of rows can cause a to determine the predicate.

Only one pair each for b and c.

Definitional Method

Scales better (more clauses), requires more math

Definitional approach:
$\boldsymbol{p}_{\boldsymbol{c}=\text { true }}$ is predicate p with every occurrence of c replaced by true $\boldsymbol{p}_{\boldsymbol{c}=\text { alses }}$ is predicate p with every occurrence of c replaced by false
To find values for the minor clauses, connect $\boldsymbol{p}_{\boldsymbol{c}=\text { true }}$ and $\boldsymbol{p}_{\boldsymbol{c}=\text { false }}$ with exclusive $O R$

$$
p_{c}=p_{c=\text { true }} \oplus p_{c=\text { false }}
$$

After solving, $\boldsymbol{p}_{\boldsymbol{c}}$ describes exactly the values needed for \boldsymbol{c} to determine \boldsymbol{p}

Definitional Method Examples

| $p=a \vee b$
 $p_{a}=p_{a=t r u e} \oplus p_{a=\text { false }}$
 $=($ true $\vee b) \times O R$ (false $\vee b)$
 $=$ true XOR b
 $=!b$ | $p=a \wedge b$ |
| :--- | :--- | :--- |

Definitional Method Examples

$$
\begin{aligned}
& p=a \wedge b \\
p_{a} & =p_{a}=\text { true } \oplus p_{a}=\text { false } \\
& =(\text { true } \wedge b) \oplus(\text { false } \wedge b) \\
& =b \oplus \text { false } \\
& =b
\end{aligned}
$$

Use the definitional approach to solve for Pa

Definitional Method Examples

$p=a \vee b$	$p=a \wedge b$
$\begin{aligned} & p_{a}=p_{a=\text { true }} \oplus p_{a=\text { false }} \\ & =(\text { true } \vee b) X O R(\text { false } \vee b) \\ & \quad=\text { true } X O R b \\ & \quad=!b \end{aligned}$	$\begin{aligned} p_{a} & =p_{a}=\text { true } \oplus p_{a}=\text { false } \\ & =(\text { true } \wedge b) \oplus(\text { false } \wedge b) \\ & =b \oplus \text { false } \\ & =b \end{aligned}$

Use the definitional approach to solve for Pa

$$
p=a \vee(b \wedge c)
$$

$$
\begin{aligned}
p_{\mathrm{a}} & =p_{\mathrm{a}}=\text { true } \oplus p_{\mathrm{a}}=\text { false } \\
& =(\text { true } \vee(\mathrm{b} \wedge c)) \oplus(\text { false } \vee(\mathrm{b} \wedge c)) \\
& =\text { true } \oplus(\mathrm{b} \wedge c) \\
& =!(\mathrm{b} \wedge c) \\
& =!b \vee!c
\end{aligned}
$$

XOR Identity Rules

Exclusive-OR (xor, \oplus) means both cannot be true That is, A xor B means
"A or B is true, but not both"

$$
\begin{aligned}
p & =A \oplus A \wedge b \\
& =A \wedge \neg b
\end{aligned}
$$

$$
\begin{aligned}
p & =A \oplus A \vee b \\
& =\neg A \wedge b
\end{aligned}
$$

with fewer symbols ...

$$
\begin{aligned}
p & =A \operatorname{xor}(A \text { and } b) \\
& =A \text { and }!b
\end{aligned}
$$

$$
\begin{aligned}
p & =A \operatorname{xor}(A \text { or } b) \\
& =!A \text { and } b
\end{aligned}
$$

Repeated Variables

Definitional method yields the same tests no matter how the predicate is expressed
$(a \vee b) \wedge(c \vee b)==(a \wedge c) \vee b$
$(a \wedge b) \vee(b \wedge c) \vee(a \wedge c)$
Only has 8 possible tests, not 64

Always use the simplest form of the predicate and ignore contradictory truth table assignments

A More Subtle Example

$$
\begin{aligned}
& \quad p=(a \wedge b) \vee(a \wedge!b) \\
& \mathbf{p}_{\mathbf{a}}=\mathbf{p}_{a=\text { true }} \oplus \mathbf{p}_{\mathbf{a}=\text { false }} \\
&=((\text { true } \wedge \mathbf{b}) \vee(\text { true } \wedge!b)) \oplus((\text { false } \wedge \mathbf{b}) \vee(\text { false } \wedge!b)) \\
&=(b \vee!b) \oplus \text { false } \\
&=\text { true } \oplus \text { false } \\
&=\text { true }
\end{aligned}
$$

```
\(p=(a \wedge b) \vee(a \wedge \neg b)\)
\(\mathbf{P b}_{\mathbf{b}}=\mathbf{P}_{\mathbf{b}=\text { true }}{ }^{\oplus} \mathbf{P}_{\mathbf{b}}=\) false
    \(=((a \wedge\) true \() \vee(a \wedge!\) true \()) \oplus((a \wedge\) false \() \vee(a \wedge!\) false \())\)
    \(=(a \vee\) false \() \oplus(\) false \(\vee a)\)
    \(=\mathbf{a} \oplus \mathbf{a}\)
    \(=\) false
```

a always determines the value of this predicate b never determines the value - b is irrelevant !

Logic Coverage Summary

Predicates are often very simple-in practice, most have less than 3 clauses
In fact, most predicates only have one clause !
With only clause, PC is enough
With 2 or 3 clauses, CoC is practical
Advantages of ACC and ICC criteria significant for large predicates
COC is impractical for predicates with many clauses
Control software often has many complicated predicates, with lots of clauses

In-class Exercise

Definitional method

$$
P=(a \mid b) \&(a \mid c) \& d
$$

Use the definitional method to solve for P_{a}
First step: $((T \mid b) \&(T \mid c) \& d) \operatorname{xor}((F \mid b) \&(F \mid c) \& d)$

In-class Exercise

Definitional method

$P=(a \mid b) \&(a \mid c) \& d$

Use the definitional method to solve for Pa
First step: $((T \mid b) \&(T \mid c) \& d) \operatorname{xor}((F \mid b) \&(F \mid c) \& d)$

$$
\begin{aligned}
P_{\mathrm{a}} & =((T \mid b) \&(T \mid c) \& d) \operatorname{xor}((F \mid b) \&(F \mid c) \& d) \\
& =(T \& T \& d) \operatorname{xor}(b \& c \& d) \\
& =d \operatorname{xor}(b \& c \& d)
\end{aligned}
$$

Using the identity: $\mathrm{A} \operatorname{xor}(\mathrm{A} \& \mathrm{~b})==\mathrm{A}$ and ! b

$$
=d \&!(b \& c)
$$

$$
=d \&(!b \mid!c)
$$

