
Introduction to Software Testing
Evolution, Design, & the Web

Software Testing & Maintenance
SWE 437
http://go.gmu.edu/swe437

Dr. Brittany Johnson-Matthews
(Dr. B for short)

http://go.gmu.edu/swe437

A little bit of history
Building new technology incurs several costs

In today’s lesson, I will separate costs into four areas

 1. Design

 2. Production

 3. Distribution

 4. Support

Over time, the relative amount of these costs have continuously changed

We started with the ability to evolve our designs slowly
2

Pre-1850: Hand-crafting
Design evolved over time, each new object better than the last
 - Low design costs
Very high production costs – weeks of labor
Low distribution cost – customers walked into the shop
Little or no support cost

3

1850s: Assembly lines
Manufacturing started to change this equation
Quickly put same design into thousands of products

Higher design costs ; very low production costs
Distribution costs started to increase
Support costs increased – but were outsourced

4

1900s: Automated Manufacturing
Robots increased speed and efficiency of production

Design costs = create expensive robots
Production cost continued to decrease
Distribution costs continued to increase
Support costs also continued to increase

5

Post WWII worldwide distribution

Design costs continued to increase
Production costs continued to decrease
Distribution capabilities increased
exponentially, decreasing cost
Support started to become “replace”

6

2000s: Free trade
This process had continued…
 - free trade agreements
 - cheap oil
 - decreases in shipping costs
 - decreases in production costs
The ultimate effect?

Design is VERY expensive
Production, distribution, & support are cheap

Manufacturing defeated evolutionary design!

Start to emphasize quantity over quality.
7

Despite all these “gains”…
Thousands of products are incredibly cheap
Many products are very low quality
Designed to last a few months or years, instead of decades
Instead of evolution, we have
 - maintenance, or
 - replacement

But we lost something wonderful…
craftsmanship

8

Sooo…

What does this have to do with
software engineering???

9

Traditional software development
Production costs for software is very low
Distribution cost is substantial
 - includes marketing, sales, shipping
Support costs escalated
Software splits design into design and implementation
 - both are very expensive!

Instead of one design for each artifact,
software has one design for many artifacts.

10

1900s software costs
Millions of customers skewed costs to the back end
 - High support costs
 - High distribution costs
New versions shipped every 4-6 years
 - MS Office, CAD, compilers, operating systems
Software needed to be “perfect out the box”
 - Very expensive design
 - Very expensive implementation – including testing

more than 50% of the cost

Software evolution was very slow!
11

Effects on research
The need to be “perfect out of the box” heavily influenced decades of SE research
 - formal methods
 - modeling the entire system at once
 - process
 - testing finished products
 - maintenance in terms of years
Much of our research focus and results assume:
 - High design costs
 - High implementation costs
 - High distribution costs
 - High support costs

12

Distribution costs
In the 1980s, technology started driving down distribution costs for software…

13

Usability and support
As usability started to increase…

The need for support decreased.

Then the World Wide Web changed everything.
14

2000s and the web

(1) The web rearranged the importance of quality criteria, including making
usability and reliability crucial

(2) The web created a new way to deploy and distribute software

15

Deploying on the web
Mostly traditional software deployment methods:

1. Bundle (specify packages to install)

2. Shrink-wrap (automate installation in self-contained environment)

3. Embed (into another application or hardware)

4. Contract (check composable components)

5. Web deployment (deploy code to cloud or server – can be manual or automated)
16

Distributing software on the web
Desktop software can be distributed across the web
 - zero-cost distribution
 - instantaneous distribution
 - This allows more frequent updates

Web applications are not distributed at all in any meaningful sense
 - software resides on the servers
 - Updates can be made weekly…daily…hourly…continuously!

Mobile applications allow the artisan to come into your “home” to improve that rocking chair.
17

The rebirth of evolutionary design

Near-zero production costs…

Immediate distribution…

Near-zero support costs…

This resuscitates evolutionary design!
18

Evolutionary software design
Pre-web software design & production

Strived for a perfect design, expensive development

Deployed a new version every 4-6 years
Evolution was very slow

19
This changes all of software engineering!

Post-web software production

Initial “pretty good” design and development
Slowly make it bigger and better
Faster evolution

Immediate changes to web applications
• Automatic updates of desktop applications
• Software upgrades pushed out to mobile devices hourly
• Replacing chips in cars during oil changes

Impacts on industry
How often are platforms like Google mail or Zoom updated?
 - Daily … sometimes hourly

Piazza class support system
 - Jeff report a bug the first day he used it
 - It was fixed before he met for class that afternoon

Sarah Allen invented YouTube
 - She advises people with 5-year ideas to think
about how they can achieve 1 idea in 6 months, and grow to the
5-year goal

20

Software engineering now
Software not just designed and built…
Software grows.

Software needs to take responsibility for its own behavior.

Waterfall is now, finally, thankfully, completely dead.

Testing must focus on evolution, not new software.

The web really does change EVERYTHING!
21

Software process
We have already seen process changes that are a direct result of web deployment &
distribution.

Agile process goals:
 - Have a working, preliminary version as fast as possible
 - Continue growing the software to have more functionality
 and better behavior
 - Easy and fast to modify
 - Adapt to sudden and frequent changes in planned behavior
Agile processes are widely used (even if not called “agile”)
Results are mixed, but use continues to grow

22

Software architecture
Software architects often assume their high level design will not change throughout
development and system lifetime
It is not clear how this supports software growth, rapid deployment, and instantaneous
distribution

 Is this attitude compatible with agile processes?
 How does architecture design interact with refactoring?

Your generation needs to deal with this!
23

Software “self-responsibility”
Evolutionary design means we cannot know everything software will ever do.

Self-management means the software adapts behavior to runtime changes
 This is crucial for evolutionary design.
Fault localization tries to find faults automatically
 This can dramatically cut the human effort required to fix software after testing.
Automated program repair goes one step further, and attempts to automatically fix faults.

24

Evolutionary testing
Test-driven design uses tests to drive requirements
 - every step is evolutionary

Regression testing isn’t just something special done “late in the process”
 - virtually all testing is now regression testing

Model-based testing allows test design to quickly and easily adapt to changes

Test automation is the key to running tests as quickly as software is now changed

TDD is an important part of this class.

25

Software costs (then vs. now)

26

Old

Design: High

Implementation: High

Production: Low

Distribution: High

Support: High

New

Design: Medium

Implementation: Medium

Production: Zero

Distribution: Zero

Support: Low

Long term impacts
The end result of large scale manufacturing was a heavy emphasis

on quantity over quality.

The web enables evolutionary design, which can allow us to

focus on quality over quantity.

What engineer wouldn’t LOVE that?!

27

