
Introduction to Software Testing
Modifying Code

Software Testing & Maintenance
SWE 437
http://go.gmu.edu/swe437

Dr. Brittany Johnson-Matthews
(Dr. B for short)

http://go.gmu.edu/swe437

Programming for maintainability

 1. Understanding the program

 2. Programming for change

 3. Coding style

2

Programming for maintainability

 1. Understanding the program

 2. Programming for change

 3. Coding style

3

Core maintenance activities
We must understand an existing system before changing it
 - How to accommodate the change?
 - What are the potential ripple effects?
 - What skills and knowledge are required?

4

Core maintenance activities
We must understand an existing system before changing it
 - How to accommodate the change?
 - What are the potential ripple effects?
 - What skills and knowledge are required?

5

4. Make the change

5. Test the change

6. Document and record the change

1. Identify the change
 - What to change, why to change
2. Manage the process…what resources are needed?
3. Understand the program
 - How to make the change, determine ripple effect

Program comprehension (simplified)

6

Read
documentation

Run the program

Read the
source code Static analysis

Dynamic analysis

What influences understanding?

Expertise: Domain knowledge, programming skills
Program structure: Modularity, level of nesting
Documentation: Readability, accuracy, up-to-date
Coding conventions: Naming style, small design patterns
Comments: Accuracy, clarity, and usefulness
Program presentation: Good use of indentation and spacing

7

Programming for maintainability

 1. Understanding the program

 2. Programming for change

 3. Coding style

8

Avoid unnecessary fancy tricks
Write for humans, not compilers
 - fully parenthesize expressions
 - pointer arithmetic is anti-engineering
 - clever programming techniques are not beneficial
In 1980, we wanted efficient runtime
 - computers were slow and memory expensive
 - Control flow dominated the running time
 - Hence the undergraduate CS emphasis on analysis of algorithms
Today: we want to make it easier to change the program
 - Readable code is easier to debug, more reliable, and more secure
 - Optimizing compilers are far better than humans
 - Overall architecture usually dominates running time

9

Provide clear documentation
Include header blocks for each method (author & version)
Add a comment every time you stop to think

 - Why a method does something is more important than what

 - What is more important than how

Document:
 - assumptions

 - variables that can be overridden by child methods
 - reliance on default and superclass constructors

Write pseudocode as comments, then write the method
 - faster and more reliable

Use a version control system with an edit history
 - Explain why each change was made clearly 10

Use white space effectively
A 1960s study asked “how far should we indent”
 - 2—4 characters is ideal
 - Fewer is hard to see

 - More makes program too wide

Avoid using tabs – they look different in every editor and printer
 - Mixing tabs and spaces is even worse
Use plenty of spaces

 - newList(x+y)=fName+space+IName+space+title;
 - newList (x+y) = fName + space + IName + space + title;

Don’t put more than one statement per line. 11

Writing maintainable code
Be tidy

 - sloppy style looks like sloppy thinking

 - sloppy style creates maintenance debt

Use clear names

 - Long names are simpler than short names
 - Don’t make it so long it’s hard to read
Don’t test for error conditions you can’t handle
 - Let them propagate to someone who does

These habits are important, if not critical, to developer jobs. 12

Java coding tips
Implement both or neither equals() and hashCode()
 - Implementing just one can cause subtle faults
Always override toString() to produce human-readable description of the
object
If equals() is called on the wrong type, return false, not an exception
If your class is cloneable, use super.clone(), not new()
 - new() will break if another programmer inherits from your class
Threads are hard to get right and harder to modify
Don’t add error checking the VM already does
 - array bounds, null pointers, etc. 13

Keep it simple, stupid
Long methods are not simple
 - Good programmers write less code, not more
Bad designs lead to more and longer methods

Don’t generalize unless it’s necessary
Ten programmers…
 - deliver twice as much code
 - four times as many faults, and
 - half the functionality as
...five programmers 14

and

Classes and objects
The point of OO design is to look at nouns (data) first,

then verbs (algorithms and methods)

Think about what it is, not what it does
 - class names should not be verbs
Objects are defined by state – the class defines behavior
Lots of switch statements may mean the class is trying to do too many things
 - Use inheritance or type parameterization
Make methods that don’t use class instance variables static
Don’t confuse inheritance with aggregation
 - inheritance implements “is-a”
 - aggregation implements “has-a” 15

Programming for change
The cost of writing a program is a small fraction of

the cost of fixing and maintaining it.
…

Don’t be lazy or selfish
…

Be an engineer!

Remember that complexity
is the number one enemy of maintainability. 16

Programming for maintainability

 1. Understanding the program

 2. Programming for change

 3. Coding style

17

Using style conventions
Select a set of style conventions
 - follow them strictly
Follow the existing style when making changes
 - even if you don’t like it
Lots of style conventions are available
 - it’s more important to be consistent than to have perfect style

18

Style guides tell us…
Case for names

- Variables, methods, classes, …

Guidelines for choosing names

Width, special characters, and splitting lines

Location of statements

Organization of methods and use of types

Use of variables

Control structures

Proper spacing and white space

Comments
19https://google.github.io/styleguide/javaguide.html

https://google.github.io/styleguide/javaguide.html

Summary
Programming habits have a major impact on readability
Readability has a major impact on maintainability
Maintainability determines long-term costs

The minor decisions that engineers make determine
how much money the company makes

This is what engineering means!
20

