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Modern software is connected
Modern programs rarely live in isolation 
 - they interact with other programs on the same computer
 - they use shared library modules
 - They communicate with programs on different computers
 - Data is shared among multiple computing devices
Web applications communicate across a network
Mobile applications live in a complex ecosystem
Web services connect dynamically during execution
Distributed computing is now common
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Why is integration hard?
Networks are unreliable

Networks are slow

 - multiple orders of magnitude slower than a function call
Programs on different computers are diverse
 - different languages, operating systems, data formats…
 - connected through diverse hardware and software applications
Change is inevitable and continuous

 - programs we connect with change
 - host hardware and software changes

Distributed software must use extremely low coupling
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Coupling explained
Tight coupling: dependencies encoded in logic
 - changes in A may require changing logic in B
 - This used to be common
Loose coupling: dependencies encoded in the structure and data flows
 - changes in A may require changing data uses in B
 - goal of data abstraction and object-oriented concepts
Extremely loose coupling (ELC): dependencies encoded only in the data contents
 - changes in A only affects the contents of B’s data
 - motivating goal for distributed software and web apps

The issues are about how we share data…
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XML supports ELC
Data is passed directly between components
Components must agree on format, types, and structure

XML allows data to be self-documenting
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Schema

P1 P2

Parser

XML
File

P3 <book>
   <author>Steve Krug</author>
   <title>Don’t Make Me Think</title>
</book>
<book>
   <author>Don Norman</author>
   <title>Design of Every Day Things</title>
</book>

P1, P2, and P3 can see the format, 
contents, and structure of the data

Free parsers are available



Discussion
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Discuss in groups

Explain coupling to each other
Have you used tight coupling?
Have you used loose coupling?

Have you used extremely loose coupling?
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Sharing data
1. Transferring files
 - one program writes to a file that another later reads
 - both programs need to agree on:
  file name, location, and format
  timing for when to read and write it
2. Sharing a database
 - replace a file with a database
 - most decisions are encapsulated in the table design
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Sharing data
3. Remote procedure invocation

 - one program calls a method in another application
 - communication is real-time and synchronous

 - Data are passed as parameters

4. Message passing

 - one program sends a message to a common message channel

 - other programs read the messages at a later time
 - programs must agree on the channel and message format
 - communications is asynchronous

 - XML is often used to implement encoded messages
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Message passing
Message passing is asynchronous and very loosely coupled.

Telephone calls are synchronous

This introduces restrictions:

 - other person must be there

 - communication must be real time

Voicemail and texts are asynchronous

 - messages left for later retrieval

 - real-time aspects less important
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Benefits of message passing
Message-based software is easier to change and reuse

 - better encapsulated than shared database
 - more immediate than file transfer
 - more reliable than remote procedure invocation
Software components depend less on each other
Several engineering advantages:
 - reliability

 - maintainability & changeability
 - security
 - scalability
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Drawbacks of message passing
Programming model is different – and complex
 - universities seldom teach event-driven software (SWE 432)
 - logic is distributed across several software components
 - harder to develop and debug
Sequencing is harder
 - no guarantees for when messages will arrive
 - messages sent in one sequence may arrive out of sequence

Some programs require applications to be synchronized

 - shopping requires users to wait for responses
 - most web apps are synchronized
  Ajax allows asynchronous communications
Message passing is slower, but good middleware helps
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Discussion
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Discuss in groups

Have you used message passing?
Have you learned about message passing?

If yes, describe to other members of the group
If not, do you understand message passing?
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Enterprise applications
Enterprise systems contain hundreds or thousands of separate applications
 - custom-built, third party vendors, legacy systems…
 - multiple tiers with different operating systems
Enterprise systems often grow from disjoint pieces
 - just like a town or city grows together and slowly integrates
Companies want to buy the best package for each task
 - then integrate them!

Thus, integrating diverse programs into a coherent enterprise application 

will be a challenge for years to come.
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Information portals
Information portals aggregate information from multiple sources into a single 

display to avoid making the user access multiple systems.

Answers are pulled from different places
 - e.g., grade sheets, syllabus, transcript…
Information portals divide the screen into different zones
They should make it easy to move data between zones
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Business-to-business integration
Integration between two separate businesses.

Business functions are available from outside suppliers or business partners
 - e.g., online travel agents use credit card service
Integration may occur “on-the-fly”
 - a customer may seek the cheapest price on a given day
Standardized data formats are critical



Data replication (observer)
Making data needed by multiple applications available where it’s needed.

Multiple business systems often need the same data
 - e.g., student email address is needed by 
 professors, registrar, department, IT…
 - when email is changed in one place, all copies must change
Data replication can be implemented in many ways
 - built into the database
 - export data to files, re-import them to other systems
 - use message-oriented middleware

replicate



Shared business functions (builder)
Same functions used by several applications.

Multiple users need the same function
 - e.g., whether a particular course is taught this semester
 - student, instructor, admins
Each function should only be implemented once
If the function only accesses data to return result, duplication is simple
If function modifies data, race conditions can occur



Service-oriented architecture (SOA)
A service is a well-defined function that is available from anywhere.

Managing a collection of useful services is a critical function
 - service directory
 - each service needs to describe its interface in a generic way
A mixture of integration and distributed application



Other common design patterns
Abstract Factory

 provides an interface for creating families of related or dependent objects without 
specifying their concrete classes.

Singleton

 ensures a class has only one instance, and provide a global point of access to it.
Visitor

 represents an operation to be performed on the elements of an object structure. 
 lets you define a new operation without changing the classes of the elements on which it 

operates.

https://sourcemaking.com/design_patterns 
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Summary: coupling, coupling, coupling
We have always known coupling is important.
Goal is to reduce the assumptions about exchanging data
 - loose coupling means fewer assumptions
A local method call is very tight coupling
 - same language, same process, typed params, return value
Remote procedure call has tight coupling, but with the complexity of distributed processing
 - the worst of both worlds
 - results in systems that are hard to maintain

Message passing has extremely loose coupling

Message passing systems are easy to maintain.


