
Introduction to Software Testing
Designing for Change

Software Testing & Maintenance
SWE 437
http://go.gmu.edu/swe437

Dr. Brittany Johnson-Matthews
(Dr. B for short)

http://go.gmu.edu/swe437

Designing for maintainability

 1. Integrating software components

 2. Sharing data and message passing

 3. Using design patterns to integrate

2

Designing for maintainability

 1. Integrating software components

 2. Sharing data and message passing

 3. Using design patterns to integrate

3

Modern software is connected
Modern programs rarely live in isolation
 - they interact with other programs on the same computer
 - they use shared library modules
 - They communicate with programs on different computers
 - Data is shared among multiple computing devices
Web applications communicate across a network
Mobile applications live in a complex ecosystem
Web services connect dynamically during execution
Distributed computing is now common

4

Why is integration hard?
Networks are unreliable

Networks are slow

 - multiple orders of magnitude slower than a function call
Programs on different computers are diverse
 - different languages, operating systems, data formats…
 - connected through diverse hardware and software applications
Change is inevitable and continuous

 - programs we connect with change
 - host hardware and software changes

Distributed software must use extremely low coupling
5

Coupling explained
Tight coupling: dependencies encoded in logic
 - changes in A may require changing logic in B
 - This used to be common
Loose coupling: dependencies encoded in the structure and data flows
 - changes in A may require changing data uses in B
 - goal of data abstraction and object-oriented concepts
Extremely loose coupling (ELC): dependencies encoded only in the data contents
 - changes in A only affects the contents of B’s data
 - motivating goal for distributed software and web apps

The issues are about how we share data…
6

XML supports ELC
Data is passed directly between components
Components must agree on format, types, and structure

XML allows data to be self-documenting

7

Schema

P1 P2

Parser

XML
File

P3 <book>
 <author>Steve Krug</author>
 <title>Don’t Make Me Think</title>
</book>
<book>
 <author>Don Norman</author>
 <title>Design of Every Day Things</title>
</book>

P1, P2, and P3 can see the format,
contents, and structure of the data

Free parsers are available

Discussion

8

Discuss in groups

Explain coupling to each other
Have you used tight coupling?
Have you used loose coupling?

Have you used extremely loose coupling?

Designing for maintainability

 1. Integrating software components

 2. Sharing data and message passing

 3. Using design patterns to integrate

9

Sharing data
1. Transferring files
 - one program writes to a file that another later reads
 - both programs need to agree on:
 file name, location, and format
 timing for when to read and write it
2. Sharing a database
 - replace a file with a database
 - most decisions are encapsulated in the table design

10

Sharing data
3. Remote procedure invocation

 - one program calls a method in another application
 - communication is real-time and synchronous

 - Data are passed as parameters

4. Message passing

 - one program sends a message to a common message channel

 - other programs read the messages at a later time
 - programs must agree on the channel and message format
 - communications is asynchronous

 - XML is often used to implement encoded messages

11

Message passing
Message passing is asynchronous and very loosely coupled.

Telephone calls are synchronous

This introduces restrictions:

 - other person must be there

 - communication must be real time

Voicemail and texts are asynchronous

 - messages left for later retrieval

 - real-time aspects less important
12

Benefits of message passing
Message-based software is easier to change and reuse

 - better encapsulated than shared database
 - more immediate than file transfer
 - more reliable than remote procedure invocation
Software components depend less on each other
Several engineering advantages:
 - reliability

 - maintainability & changeability
 - security
 - scalability

13

Drawbacks of message passing
Programming model is different – and complex
 - universities seldom teach event-driven software (SWE 432)
 - logic is distributed across several software components
 - harder to develop and debug
Sequencing is harder
 - no guarantees for when messages will arrive
 - messages sent in one sequence may arrive out of sequence

Some programs require applications to be synchronized

 - shopping requires users to wait for responses
 - most web apps are synchronized
 Ajax allows asynchronous communications
Message passing is slower, but good middleware helps

14

Discussion

15

Discuss in groups

Have you used message passing?
Have you learned about message passing?

If yes, describe to other members of the group
If not, do you understand message passing?

Designing for maintainability

 1. Integrating software components

 2. Sharing data and message passing

 3. Using design patterns to integrate

16

Enterprise applications
Enterprise systems contain hundreds or thousands of separate applications
 - custom-built, third party vendors, legacy systems…
 - multiple tiers with different operating systems
Enterprise systems often grow from disjoint pieces
 - just like a town or city grows together and slowly integrates
Companies want to buy the best package for each task
 - then integrate them!

Thus, integrating diverse programs into a coherent enterprise application

will be a challenge for years to come.
17

Information portals
Information portals aggregate information from multiple sources into a single

display to avoid making the user access multiple systems.

Answers are pulled from different places
 - e.g., grade sheets, syllabus, transcript…
Information portals divide the screen into different zones
They should make it easy to move data between zones

18

Business-to-business integration
Integration between two separate businesses.

Business functions are available from outside suppliers or business partners
 - e.g., online travel agents use credit card service
Integration may occur “on-the-fly”
 - a customer may seek the cheapest price on a given day
Standardized data formats are critical

Data replication (observer)
Making data needed by multiple applications available where it’s needed.

Multiple business systems often need the same data
 - e.g., student email address is needed by
 professors, registrar, department, IT…
 - when email is changed in one place, all copies must change
Data replication can be implemented in many ways
 - built into the database
 - export data to files, re-import them to other systems
 - use message-oriented middleware

replicate

Shared business functions (builder)
Same functions used by several applications.

Multiple users need the same function
 - e.g., whether a particular course is taught this semester
 - student, instructor, admins
Each function should only be implemented once
If the function only accesses data to return result, duplication is simple
If function modifies data, race conditions can occur

Service-oriented architecture (SOA)
A service is a well-defined function that is available from anywhere.

Managing a collection of useful services is a critical function
 - service directory
 - each service needs to describe its interface in a generic way
A mixture of integration and distributed application

Other common design patterns
Abstract Factory

 provides an interface for creating families of related or dependent objects without
specifying their concrete classes.

Singleton

 ensures a class has only one instance, and provide a global point of access to it.
Visitor

 represents an operation to be performed on the elements of an object structure.
 lets you define a new operation without changing the classes of the elements on which it

operates.

https://sourcemaking.com/design_patterns

https://sourcemaking.com/design_patterns

Summary: coupling, coupling, coupling
We have always known coupling is important.
Goal is to reduce the assumptions about exchanging data
 - loose coupling means fewer assumptions
A local method call is very tight coupling
 - same language, same process, typed params, return value
Remote procedure call has tight coupling, but with the complexity of distributed processing
 - the worst of both worlds
 - results in systems that are hard to maintain

Message passing has extremely loose coupling

Message passing systems are easy to maintain.

