
Introduction to Software Testing
Model-driven Test Design

Software Testing & Maintenance
SWE 437
http://go.gmu.edu/swe437

Dr. Brittany Johnson-Matthews
(Dr. B for short)

http://go.gmu.edu/swe437

Software, testing, & complexity
No other engineering field builds products as complicated as software

The term correctness has no meaning
 - Is a building correct?
 - Is a car correct?
 - Is a subway system correct?

Unlike other engineers, we must use abstraction to manage complexity
 - This is the purpose of the model-driven test design process
 - The “model” is an abstract structure

2

In-class Exercise

3

Discuss software correctness

Have you thought of correctness in software as possible or impossible?
Do you agree with the claim in the book, or is it hard to accept?

You have five minutes.

Software testing foundations (2.0)
Testing can only show the presence of failures,

not their absence!

Remember: not all inputs will “trigger” a fault into causing a failure.
4

Fault & Failure Model (RIPR)
Four conditions necessary for a failure to be observed

1. Reachability: The location or locations in the program that contain the
fault must be reached

2. Infection: The state of the program must be incorrect
3. Propagation: The infected state must cause some output or final state

of the program to be incorrect
4. Reveal: The tester must observe part of the incorrect portion of the

program state.
5

RIPR Model

Reachability
Infection
Propagation
Revealability

6

Test

Fault

Incorrect
Program State

Test
Oracles

Final Program State

Observed Final
Program State

Reaches

Infects

Propagates

Reveals
Incorrect

Final State

In-class Exercise

7

Discuss test oracles

Have you written any automated tests?
How did you decide what assertions to write?

Do you think you every checked the wrong part of the state?
You have five minutes.

Traditional testing levels (2.3)
Acceptance testing

Systems testing

Integration testing

Module testing (developer testing)

Unit testing (developer testing)

Class A

method
mA1()
method
mA2()

Class B

method
mB1()
method
mB2()

main Class P

Traditional testing levels (2.3)
Acceptance testing: Is the software acceptable to the user?

Systems testing

Integration testing

Module testing (developer testing)

Unit testing (developer testing)

Class A

method
mA1()
method
mA2()

Class B

method
mB1()
method
mB2()

main Class P

Traditional testing levels (2.3)
Acceptance testing: Is the software acceptable
to the user?
Systems testing: Test the overall
functionality of the system
Integration testing

Module testing (developer testing)

Unit testing (developer testing)

Class A

method
mA1()
method
mA2()

Class B

method
mB1()
method
mB2()

main Class P

Class A

method
mA1()
method
mA2()

Class B

method
mB1()
method
mB2()

main Class P

Traditional testing levels (2.3)
Acceptance testing: Is the software acceptable
to the user?
Systems testing: Test the overall
functionality of the system
Integration testing: Test how modules
interact with one another
Module testing (developer testing)

Unit testing (developer testing)

Traditional testing levels (2.3)
Acceptance testing: Is the software acceptable
to the user?
Systems testing: Test the overall
functionality of the system
Integration testing: Test how modules
interact with one another
Module testing (developer testing):

Test each class, file, module, component
Unit testing (developer testing)

Class A

method
mA1()
method
mA2()

Class B

method
mB1()
method
mB2()

main Class P

Coverage criteria (2.4)
Even small programs have too many inputs to fully test them all
 - private static double computeAverage (int A, int B, int C)
 - On a 32-bit machine, each variable has over 4 billion possible values
 - Over 80 octillion possible tests!!
 - Input space might as well be infinite

Testers search a huge input space
 - Trying to find the fewest inputs that will find the most problems

Coverage criteria give structured, practical ways to search the input space
 - search the input space thoroughly
 - not much overlap in the tests

Advantages of coverage criteria
Maximize the “bang for the buck”

Provide traceability from software artifacts to tests
 - source, requirements, design models,…

Make regression testing easier

Gives testers a “stopping rule” … when testing is finished

Can be well supported with powerful tools

Test requirements & criteria
Test criterion: A collection of rules and a process that defines test requirements
 - Cover every statement
 - Cover every functional requirement

Test requirements: specific things that must be satisfied or covered during testing
 - each statement might be a test requirement
 - each functional requirement might be a test requirement

Testing researchers have defined dozens of criteria, but they are all really just
a few criteria on four types of structures…

 1. Input domains 3. Logic expressions
 2. Graphs 4. Syntax descriptions

Old view: testing transparency
Opaque (or black box) testing: derive tests from external descriptions of the software, including
specifications, requirements, and design

Transparent (or white box) testing: derive tests from the source code internals of the software,
specifically including branches, individual conditions, and statements

Model-based testing: derive tests from a model of the software (such as a UML diagram)

Model Driven test design makes these distinctions less important.
The more general question is:

from what abstraction level do we derive tests?

Model-driven test design (2.5)
Test design is the process of designing input values that will effectively
test software

Test design is one of the several activities for testing software
 - Most mathematical

 - Most technically challenging

Testing activities
Testing can be broken up into four general types of activities

 1. Test design 1.a. Criteria based

 1.b. Human-based

 2. Test automation

 3. Test execution

 4. Test evaluation

Each type of activity requires different skills, background knowledge, education, and training

Using the same people for all four test activities clearly wastes resources.

Testing activities
Testing can be broken up into four general types of activities

 1. Test design 1.a. Criteria based

 1.b. Human-based

 2. Test automation

 3. Test execution

 4. Test evaluation

Each type of activity requires different skills, background knowledge, education, and training

Using the same people for all four test activities clearly wastes resources.

Criteria-based test design
Design test values to satisfy coverage criteria or other engineering goal

This is the most technical job in software testing
Requires knowledge of:
 - discrete math
 - programming
 - testing
Requires much of a traditional CS degree
This is intellectually stimulating, rewarding, and challenging
Test design is analogous to software architecture on the development side
Using people who are not qualified to design tests is a sure way to get ineffective tests

Human-based test design
Design test values based on domain knowledge of the program

and human knowledge of testing

This is much harder than it may seem to developers
Criteria-based approaches can be blind to special situations
Requires knowledge of:

- domain, testing, and user interfaces
Requires almost no traditional CS

- a background in the domain of the software is essential
- an empirical background is very helpful (biology, psychology…)
- a logic background is very helpful (law, philosophy, math…)

Can be intellectually stimulating, typically not preferred by CS majors.

Test automation
Embed test values into executable scripts

This is slightly less technical
Requires knowledge of programming
Requires very little theory
Often requires solutions to difficult problems related to observability and controllability
Can be boring for test designers
Programming is out of reach for many domain experts
Who is responsible for determining and embedding the expected outputs?
 - Test designers may not always know the expected outputs
 - Test evaluators need to get involved early to help with this

Model-driven test design

software artifact implementation
abstraction

level

design
abstraction

level

test requirements

test requirements

refined requirements /
test specs

input
values

test casestest
scripts

test
results

model / structure

pass / fail

Model-driven test design

software artifact implementation
abstraction

level

design
abstraction

level

test requirements

test requirements

refined requirements /
test specs

input
values

test casestest
scripts

test
results

model / structure

pass / fail

analysis
domain
analysis

criterion refine

generate

prefix
postfix

expected

automateexecuteevaluate

feedback

Model-driven test design

software artifact

test requirements

test requirements

refined requirements /
test specs

input
values

test casestest
scripts

test
results

model / structure

pass / fail

Test Design

Test AutomationTest
Execution

Test
Evaluation

Small example

Software Artifact : Java Method
/**
 * Return index of node n at the
 * first position it appears,
 * -1 if it is not present
*/
public int indexOf (Node n)
{
 for (int i=0; i < path.size(); i++)
 if (path.get(i).equals(n))
 return i;
 return -1;
}

45

3

2

1 i = 0

i < path.size()

if

return ireturn -1

Control Flow Graph

Small example (continued)

45

3

2

1

Abstract graph version

Support tool for graph coverage
http://www.cs.gmu.edu/~offutt/softwaretest/

Edges
1 2
2 3
3 2
3 4
2 5
Initial Node: 1
Final Nodes: 4, 5

6 requirements for Edge-
Pair Coverage
1. [1, 2, 3]
2. [1, 2, 5]
3. [2, 3, 4]
4. [2, 3, 2]
5. [3, 2, 3]
6. [3, 2, 5]

Test Paths
[1, 2, 5]
[1, 2, 3, 2, 5]
[1, 2, 3, 2, 3, 4]

http://www.cs.gmu.edu/~offutt/softwaretest/

In this textbook…

Most of the content is about test design.

Other activities are well covered elsewhere.

In-class Exercise

29

Discuss coverage criteria

Why do software orgs use coverage criteria?
Why don’t more software orgs use coverage criteria?

You have five minutes.

