
Introduction to Software Testing
Test Automation (Ch. 3)

Software Testing & Maintenance
SWE 437
http://go.gmu.edu/swe437

Dr. Brittany Johnson-Matthews
(Dr. B for short)

http://go.gmu.edu/swe437

Testing activities
Testing can be broken up into four general types of activities

 1. Test design 1.a. Criteria based

 1.b. Human-based

 2. Test automation

 3. Test execution

 4. Test evaluation

What is test automation?
Using software to control the testing

-Setting up test preconditions
-Test execution

-Comparing actual results to test results
-Test reporting

3

What is test automation?
Using software to control the testing

-Setting up test preconditions
-Test execution
-Comparing actual results to test results
-Test reporting

Reduces cost

Reduces human error

Reduces variance in test quality from different individuals
Significantly reduces the cost of regression testing

4

Software testability (3.1)
The degree to which a system or component facilitates the establishment of

test criteria and the performance of tests to determine whether those criteria
have been met.

How hard is it to find faults in the software
Testability is dominated by two practical problems:

-How to observe the results of test execution
-How to provide test values to the software

5

Software testability (3.1)
The degree to which a system or component facilitates the establishment of

test criteria and the performance of tests to determine whether those criteria
have been met.

How hard is it to find faults in the software
Testability is dominated by two practical problems:

-How to observe the results of test execution
-How to provide test values to the software

6

Observability & Controllability
Observability
How easy it is to observe the behavior of a program in term of its outputs, effects on
the environment, and other hardware and software components

-Software that affects hardware devices, databases, or remote files have low observability

Controllability
How easy it is to provide a program with the needed inputs, in terms of values,
operations, and behaviors

-Easy to control software with inputs from keyboards
-Inputs from hardware sensors or distributed software is harder

Data abstraction reduces controllability and observability
7

Observability & Controllability
Observability
How easy it is to observe the behavior of a program in term of its outputs, effects on
the environment, and other hardware and software components

-Software that affects hardware devices, databases, or remote files have low observability

Controllability
How easy it is to provide a program with the needed inputs, in terms of values,
operations, and behaviors

-Easy to control software with inputs from keyboards
-Inputs from hardware sensors or distributed software is harder

Data abstraction reduces controllability and observability
8

Observability & Controllability
Observability
How easy it is to observe the behavior of a program in term of its outputs, effects on
the environment, and other hardware and software components

-Software that affects hardware devices, databases, or remote files have low observability

Controllability
How easy it is to provide a program with the needed inputs, in terms of values,
operations, and behaviors

-Easy to control software with inputs from keyboards
-Inputs from hardware sensors or distributed software is harder

Data abstraction reduces controllability and observability
9

Components of a test case (3.2)
A test case is a multipart artifact with a definite structure

Test case values
The input values needed to complete an execution of the software
under test

Expected results
The result that will be produced by the test if the software behaves
as expected

-A test oracle uses expected results to decide whether a test passed or
failed

10

Components of a test case (3.2)
A test case is a multipart artifact with a definite structure

Test case values
The input values needed to complete an execution of the software
under test

Expected results
The result that will be produced by the test if the software behaves
as expected

-A test oracle uses expected results to decide whether a test passed or
failed

11

Affecting controllability & observability

Prefix values

Inputs to put the software into the correct state to
receive the test case values

Postfix values

Inputs that must be sent to the software after the test
case values

12

SOFTWAREinputs

Affecting controllability & observability

Prefix values

Inputs to put the software into the correct state to
receive the test case values

Postfix values

Inputs that must be sent to the software after the test
case values

13

SOFTWAREinputs

inputs SOFTWAREtest
cases

Putting it all together
Test case

The test case values, prefix values, postfix values, and expected results necessary
for a complete execution and evaluation of the software under test

Test set (or suite)

A set of test cases

Executable test script

A test case that is prepared in a form to be executed automatically on the test
software and produce a report

14

Test automation framework (3.3)

A set of assumptions, concepts, and tools

that support test automation.

15

JUnit for Java test automation
Junit can be used to test…

-…an entire object
-…part of an object – a method or some interacting methods
-…interaction between several objects

It is primarily intended for unit and integration testing, not systems testing
Each test is embedded into one test method

A test class contains one or more test methods
Test classes include:

-A collection of test methods
-Methods to set up the state before and update the state after each test and before and after all tests

Get started at junit.org
16

JUnit for Java test automation
Junit can be used to test…

-…an entire object
-…part of an object – a method or some interacting methods
-…interaction between several objects

It is primarily intended for unit and integration testing, not systems testing
Each test is embedded into one test method

A test class contains one or more test methods
Test classes include:

-A collection of test methods
-Methods to set up the state before and update the state after each test and before and after all tests

Get started at junit.org
17

JUnit test fixtures
A test fixture is the state of the test

-Objects and variables that are used by more than one test
-Initializations (prefix values)
-Reset values (postfix values)

Different tests can use the objects without sharing the state
Objects used in test fixtures should be declared as instance variables

They should be initialized in a @Before method
Can be deallocated or reset in an @After method

18

JUnit test fixtures
A test fixture is the state of the test

-Objects and variables that are used by more than one test
-Initializations (prefix values)
-Reset values (postfix values)

Different tests can use the objects without sharing the state
Objects used in test fixtures should be declared as instance variables

They should be initialized in a @Before method
Can be deallocated or reset in an @After method

19

Simple JUnit Example

20

public class Calc
{
 static public int add(int a, int b)
 {
 return a + b;
 }
}

import org.junit.Test;
import static org.junit.Assert.*;

public class CalcTest
{
 @Test public void testAdd()
 {
 assertTrue(“testAdd incorrect”,
 5 == Calc.add(2, 3));
 }
}

Simple JUnit Example

21

public class Calc
{
 static public int add(int a, int b)
 {
 return a + b;
 }
}

import org.junit.Test;
import static org.junit.Assert.*;

public class CalcTest
{
 @Test public void testAdd()
 {
 assertTrue(“testAdd incorrect”,
 5 == Calc.add(2, 3));
 }
}

Printed if
assert fails

Simple JUnit Example

22

public class Calc
{
 static public int add(int a, int b)
 {
 return a + b;
 }
}

import org.junit.Test;
import static org.junit.Assert.*;

public class CalcTest
{
 @Test public void testAdd()
 {
 assertTrue(“testAdd incorrect”,
 5 == Calc.add(2, 3));
 }
}

Expected
output

Printed if
assert fails

Simple JUnit Example

23

public class Calc
{
 static public int add(int a, int b)
 {
 return a + b;
 }
}

import org.junit.Test;
import static org.junit.Assert.*;

public class CalcTest
{
 @Test public void testAdd()
 {
 assertTrue(“testAdd incorrect”,
 5 == Calc.add(2, 3));
 }
}

Test
values

Expected
output

Printed if
assert fails

Testing the Min class

24

Testing the Min class

25

In-class Exercise

26

Write test inputs for the Min class

Be sure to include expected outputs

Once you have enough tests, write one in JUnit.

If you’re not sure how, ask for help.
If you have written JUnit tests, help somebody who has not.

You do not need to execute the tests.

MinTest class

27

Standard imports for all JUnit classes:

Test fixture and pre-test setup method (prefix):

Post test teardown method (postfix):

import static org.junit.Assert.*;
import org.junit.*;
import java.util.*;

private List<String> list; // Test fixture

// Set up - Called before every test method.
@Before
 public void setUp()
 {
 list = new ArrayList<String>();
 }

// Tear down - Called after every test method.
@After
public void tearDown()
{
 list = null; // redundant in this example
}

28

@Test public void testForNullList()
{
 list = null;
 try {
 Min.min(list);
 } catch (NullPointerException e)
{
 return;
 }

fail(“NullPointerException
expected”);
}

@Test (expected =
NullPointerException.class)
public void testForNullElement()
{
 list.add(null);
 list.add("cat");
 Min.min(list);
}

This NullPointerException test
uses the fail assertion

This NullPointerException test
decorates the @Test annotation with
the class of the exception

This NullPointerException test
catches an easily overlooked
special case

@Test(expected =
NullPointerException.class)
public void testForSoloNullElement()
{
 list.add(null);
 Min.min(list);
}

Min test cases: NullPointerException

29

More exception tests for Min
@Test(expected =
ClassCastException.class)
@SuppressWarnings("unchecked")
public void
testMutuallyIncomparable()
{
 List list = new ArrayList();
 list.add("cat");
 list.add("dog");
 list.add(1);
 Min.min(list);
}

@Test(expected =
IllegalArgumentException.class)
public void testEmptyList()
{
 Min.min(list);
}

Note that Java generics
don’t prevent clients from
using raw types!

Special case: Testing for the empty list

30

Remaining tests for Min
@Test
public void testSingleElement()
{
 list.add("cat");
 Object obj = Min.min(list);

assertTrue("Single Element List",
obj.equals("cat"));
}

@Test
 public void testDoubleElement()
 {
 list.add("dog");
 list.add("cat");
 Object obj = Min.min(list);

assertTrue("Double Element List",
obj.equals("cat"));
 } Finally! A couple of “Happy Path” tests

Summary: Seven tests for Min

31

Five tests for exceptions
1. null list
2. null element with multiple elements
3. null single element
4. incomparable types
5. empty elements

Two without exceptions
1. single element
2. two elements

Junit Resources

32

Some JUnit tutorials
- https://www.tutorialspoint.com/junit/index.htm
- https://www.vogella.com/tutorials/JUnit/article.html
- https://www.parasoft.com/blog/junit-tutorial-setting-up-writing-and-running-java-unit-
tests/

JUnit: download and documentation
- http://www.junit.org

https://www.tutorialspoint.com/junit/index.htm
https://www.vogella.com/tutorials/JUnit/article.html
https://www.parasoft.com/blog/junit-tutorial-setting-up-writing-and-running-java-unit-tests/
https://www.parasoft.com/blog/junit-tutorial-setting-up-writing-and-running-java-unit-tests/
http://www.junit.org/

Summary

33

The only way to make testing efficient as well as effective is to automate as
much as possible

Test frameworks provide very simple ways to automate our tests

It is no “silver bullet” however…it does not solve the hard problem of
testing:

What test values to use?

This is test design – the purpose of test criteria

