
Introduction to Software
Testing

Test Driven Development
(TDD)Software Testing & Maintenance

SWE 437

http://go.gmu.edu/swe437

Dr. Brittany Johnson-Matthews
(Dr. B for short)

http://go.gmu.edu/swe437

Growing importance of
testing
Philosophy of traditional software development methods

-Upfront analysis

-Extensive modeling

-Reveal problems as early as possible

2

Original Revision

D
el

ta

Time

C
o

st

More work must be revised

Scaling assumptions
Traditional assumptions are…

1. Modeling and analysis can identify potential problems early in development

2. Savings implied by the cost-of-change curve justify the cost of modeling and analysis
over the life of the project

These are true if requirements are always complete and current

But customers always change their minds!
-Humans are naturally good at approximating

-But pretty bad at perfecting

These two assumptions have made software engineering frustrating and difficult for
decades

Thus, agile methods…
3

Why be agile?
Agile methods start by recognizing that neither assumption is valid for many
current software projects

-Software engineers are not good at developing requirements

-We do not anticipate many changes

-Many of the changes we do anticipate are not needed

Requirements (and other “non-executable artifacts”) tend to go out of date
very quickly

-We seldom take time to update them

-Many current software projects change continuously

Agile methods expect software to start small and evolve over time
-Embraces software evolution instead of fighting it 4

Supporting evolutionary
design
Traditional design advice says to anticipate changes

Designers often anticipate changes that don’t happen

Both anticipated and unanticipated changes affect design
5

Evolving
 Design

Unanticipate
d
 Change

Anticipated
 Change

Anticipated
 change that

doesn’t happen

The test harness as guardian
(4.2)

What is correctness?

6

Agile Correctness
(Existential)

X

Y

1 5

1

5

10

10

Traditional Correctness
(Universal)
V x,y, x ≥ y

{ (1, 1) → T
 (1, 0) → T
 (0, 1) → F
 (10, 5) → T
 (10, 12) → F }

Supporting evolutionary
design
In traditional methods, we try to define all correct behavior completely, at the

beginning

-What is correctness?

-Does “correctness” mean anything in large engineering products?

-People are VERY BAD at completely defining correctness

In agile methods, we redefine correctness to be relative to a specific set of tests

-If the software behaves correctly on the tests, it is “correct”

-Instead of defining all behaviors, we demonstrate some behaviors

-Mathematicians may be disappointed at lack of completeness

But software engineers ≠ mathematicians! 7

In-class Exercise

8

Discuss

limited correctness

Do you understand the distinction?

How does limited correctness related to evolutionary design?

Verifying ”correctness”
A test harness runs all automated tests and reports results to the developer

Tests must be automated

-Test automation is a prerequisite to test driven development

Every test must include a test oracle that can evaluate whether that test
executed correctly

The tests replace the requirements

Tests must be high quality and must run quickly

We run tests every time we make a change to the software
9

Continuous integration
Agile methods work best when the current version of the software can be run
against all tests at any time

A continuous integration server rebuilds the system, returns, and re-verifies tests
whenever any update is checked into the repository

Mistakes are caught earlier

Other developers are aware of changes early

The rebuild and reverify must happen as soon as possible
-Thus, tests need to execute quickly

A continuous integration server doesn’t just run tests,

it decides if a modified system is still correct.
10

Continuous integration reduces
risk

TDD encourages incremental integration of functionality

Non-integrated functionality is dangerous

11

Build it right: TDD

The heart-beat of TDD = Test-Code-Refactor
-The rule: only write code to fix a failing test

-Traditional development cycle

-Test-driven development cycle

Sometimes called red-green-refactor
12

CodeDesign Test

CodeTest
Refacto

r

Build it right: TDD
First, we write a test

This really amounts to design by example
-We make decisions about how the Application Programmer Interface (API) works

-Class name, method names, return results, etc.

-This is essentially the user interface

-We’re thinking hard about how code is used

-We’re taking a client perspective

-We’re working at a very small scale

Example for a stack

Start with one concrete client interaction

13

stack = … ;
stack.push (x);
y = stack.pop();
assertEquals (x, y);

In-class Exercise

14

You are asked to write a program to merge two lists

Design the FIRST test case (test values and expected output)

Do NOT consider software design, or details of the behavior that
are not needed for the first test

Build it right: TDD
Then we write just enough code

-We don’t write more code

-All we want is to make the test pass
-It should be a very small step

-Implementation probably not optimal

-We don’t care (yet)

Goal: Make code base (just) pass test suite

15

Build it right: TDD
And then we refactor

TDD without refactoring just makes ugly code

-Maintenance debt

We have numerous transformations to address this

Developing with small steps

-The code always runs!

-Changes are small enough to fit in our heads

-Time-frame is minutes to (maybe) hours

-Evolutionary design

-Anticipated vs unanticipated changes

-Many “anticipated changes” turn out to be unnecessary
16

Build it right: TDD
Keeping code healthy with refactoring

Refactoring: A disciplined technique for restructuring an existing body of code, and
altering its internal structure without changing its external behavior

-Refactoring is disciplined

-Wait for a problem before solving it

-Refactorings are transformations

-Many refactorings are simply applications of patterns

-Refactorings alter internal structure

-Refactorings preserve behavior

Focus is on current code, not future code.

17

User stories
A user story is a few sentences that capture what a user will do with

the software

-In the language of the end user

-Usually small in scale with few details

-Not archived
18

Withdraw money
from checking
account

Support technician
sees customer’s
history on demand

Agent sees a list of
today’s interview
applicants

In-class Exercise

19

In assignment 3, you added new functionality.

Each individual in your group:

write a user story that would start the need for that functionality

Share the user stories in your group and critique them

- Are they the right size?

- Are they in the user’s vocabulary?

Acceptance tests with agile

20

Acceptance
Test

(Failing)
User
Story

TDD
Test 1

Change
software &

Refactor

TDD
Test 2

Change
software &

Refactor

Acceptance
Test

(Passing)

Tests
archived

Continue adding TDD
tests until acceptance
test passes

Refactoring
avoids
maintenance

The caveat

Do TDD tests (acceptance or otherwise) test the software well?

-Do the tests achieve good coverage on the code?

-Do the tests find most of the faults?

-If software passes, should management feel confident the software is reliable?

NO!

21

Why not?
Most agile tests focus on “happy paths”

-What should happen under normal use

They often miss things like

-Confused-user paths

-Creative-user paths

-Malicious-user paths

The agile methods literature does not give much guidance

22

Summary – take small steps
More companies are putting testing first

This can dramatically decrease cost and increase quality

A different view of “correctness”

-Restricted but practical

Embraces evolutionary design

TDD is definitely not test automation

-Test automation is a prerequisite to TDD

TDD tests aren’t enough

23

	Slide 1: Introduction to Software Testing Test Driven Development (TDD)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

