
Successful Architecture for Short Message Service Center

Eltjo R. Poort1, Hans Adriaanse1, Arie Kuijt2, Peter H.N. de With1,3

1 LogicaCMG, P.O. Box 159, 1180 AD Amstelveen, The Netherlands
2 LogicaCMG Telecoms, Merweplein 5, 3432 GN Nieuwegein, The Netherlands

3 Eindhoven Univ. of Technol., P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{eltjo.poort,hans.adriaanse,arie.kuijt,peter.de.with}@logicacmg.com

Abstract

This paper presents and analyzes the key architectural
decisions in the design of a successful Short Message Ser-
vice Center as part of a GSM network.

1. Introduction

In the early nineties, a Short Message Service Center1

was developed according to the specifications for text mes-
saging embedded in the GSM standard [3]. This paper
looks back at the conceptual design phase of the realization
project. The paper is a practitioner’s report, analyzing the
key architectural decisions and distinguishing factors that
contributed to the system’s success.

2. System requirements

The SMSC’s key requirements are listed according to the
categorization presented in [4]: first the primary (functional)
requirements, and then the secondary requirements, divided
in secondary functional requirements and quality require-
ments.

2.1. Primary requirements

Figure 1 shows the SMSC system in its primary context.
The main purpose of the system is [PF1:] to pass messages
between mobile telephones in a GSM network , and from
and to other systems [PF2:] outside of the GSM network.
Messages that cannot be immediately delivered are [PF3:]
temporarily stored in the system.

1 This system was developed and commercially deployed by CMG, cur-
rently LogicaCMG Telecoms. In order to protect the commercial in-
terests of the manufacturer, the descriptions have been left at a reason-
ably high level of abstraction, and data are mostly not quantified.

Figure 1. SMSC context.

2.2. Secondary requirements

The major secondary functional requirements were that
[SF1:] a record of every message that has passed through
the system is kept for billing purposes, and [SF2:] there is
an interface to monitor and operate the system.

The major quality requirements set by the customers
centered around [QR1:]performanceof message through-
put, [QR2:] availability of the messaging service and
[QR3:] reliability of message storage. [QR4:]Timeli-
nessin responses to external systems was critical. With
a view to productizing of the solution, the manufac-
turer added requirements for [QR5:]extensibility and
[QR6:] scalabilityof the solution.



3. Key architectural design decisions

In order to fulfill the requirements set out above, the ar-
chitects made some design choices that distinguished the
system from other similar systems in three major aspects:
platform choice, storage strategyandinterprocess commu-
nication.

3.1. Platform choice

The main choice to be made with respect to the plat-
form for the SMSC was between a traditional “telecom
switch” platform and an IT platform. Even though the tele-
com switch platforms were better rated in terms of perfor-
mance [QR1], availability [QR2] and reliability [QR3], IT
platforms were deemed superior in terms of extensibility at
a reasonable cost [QR5].

At the time of the design of the SMSC, the most popu-
lar platforms for these kinds of medium-high performance
requirements were Unix environments. The development
team, however, also had ample experience with OpenVMS
platforms. It was felt that the OpenVMS platform would
better be able to fulfill the timing requirements [QR4].

3.2. Storage strategy

The performance of the system [QR1] was important and
was perceived to become more important later on [QR6].
For this reason, it was decided to use a system where mes-
sages were stored in memory and on disk in parallel. The
permanent message store mechanism is based on propri-
etary OpenVMS file I/O. If a more conventional storage
strategy would have been used, such as an RDBMS, the
added resource usage needed to perform the more com-
plex file operations would have made it harder to fulfill
the performance requirements [QR1]. Thus, the chosen stor-
age strategy provided a better fit with the non-functional re-
quirements.

3.3. Interprocess communication

A process architecture over multiple nodes was neces-
sary to fulfill the performance and scalability requirements
[QR1,QR6], resulting in a need for transparent communica-
tion between processes (IPC) running on different hardware
units. It was felt that using the commercial-off-the-shelf IPC
products available at the time would cause problems ful-
filling the performance and flexibility [QR5] requirements.
The team decided to develop a mean-and-lean transparent
IPC itself. The resulting utility was christened VIQ (Virtual
Interprocess Queue).

4. Conclusions and discussion

In the years following delivery of the system to the first
customers, demand for short message services grew spec-
tacularly. In the race to keep up with this growing demand,
performance and reliability turned out to be the main decid-
ing factors. The product quickly became the world’s leading
SMS product in terms of number of subscribers being ser-
viced.

The major lesson we learned from this success story is to
beware of fashion in system design.In the SMSC case, key
architectural choices deviated from the prevailing “fashion”
at that time, because analysis indicated that the more popu-
lar practices were not the best choices to fulfill the key re-
quirements of performance, timeliness and reliability. The
deviations turned out to be the key distinguishing factors in
the architecture, that led to a success story.

Practicing architects in our experience are often under
pressure from managers and customers to follow trends and
fashions in system design. This phenomenon can partly be
attributed to personal risk management behavior: it is hard
to blame a manager for making a wrong decision if many
others made the same wrong decision. We frequently en-
counter the term “best practice” to rationalize decisions that
follow trends and fashions, often without a clear trade-off
analysis as to why these practices are best for that partic-
ular situation. For this reason, we prefer the term “best fit
practice” to the ubiquitous “best practice”.

Methods like the Cost Benefit Analysis Method [1] can
help architects to present the benefits of their choices in an
objective way. This can be especially helpful when arguing
choices that go against prevailing “fashion ”. It should, how-
ever, be kept in mind that the previously mentioned “career
risk management” argument for following trends and fash-
ions is not necessarily invalid, and risk management related
quality attributes can rightfully show up in architecture eval-
uations [2].

References

[1] J. Asundi, R. Kazman, and M. Klein. Using economic con-
siderations to choose among architecture design alternatives.
Technical Report CMU/SEI-2001-TR-035, SEI, 2001.

[2] P. Clements, R. Kazman, and M. Klein.Evaluating Software
Architectures. Addison Wesley, 2002.

[3] ETSI. European digital cellular telecommunications system
(phase 1);technical realization of the short message service
point-to-point (gsm 03.40). http://www.etsi.org, 1995.

[4] E. R. Poort and P. H. N. de With. Resolving requirements con-
flicts through non-functional decomposition. InProceedings
of the 4th Working IEEE/IFIP Conference on Software Archi-
tecture (WICSA), June 2004.


