
Acknowledgment: D. Garlan & T. Lattanze @ CMU 1

GMU SWE 443 Software Architectures Spring 2012

Lab 1: Pipe-and-Filter

Sousa Discuss: Feb 2, Due: Feb 16

Problem Description

The objective of this assignment is to develop an appreciation of architectural patterns/styles
and their impact on systemic properties. This assignment will use the pipe-and-filter architectur-
al pattern as an exemplar. Part of this assignment will be implementation-oriented, allowing you
to experiment with a particular pipe-and-filter implementation strategy in order to gain a clearer
understanding of the issues associated with carrying an architectural design through to code.
Note that this is not a programming class, and so the emphasis of this assignment is on the ar-
chitecture issues – this cannot be stressed enough. Simply re-writing the entire implementa-
tion will indicate a lack of understanding of the core architectural concepts presented in class.

The assignment consists of two parts: For the first part of the assignment, you will be provided a
working sample system that uses a (coding) framework supporting the pipe-and-filter paradigm.
The application domain for this assignment is signal processing applications, as described be-
low. Your task in part one is to extend the existing framework to architect and build the systems
specified in the requirements below.

The second part of the assignment consists of analyzing the architecture of the system. After
your analysis, design, and coding, you will reflect upon your work and answer questions related
to the design decisions you made in part one. While you may discuss design decisions with
your colleagues, the lab must be done individually.

Business Context and Key Architectural Approaches

The principal stakeholder for this system is an organization that builds instrumentation systems.
Instrumentation is a typical kind of signal processing application where streams of data are
read, processed in a variety of ways, and displayed or stored for later use. A key part of modern
instrumentation systems is the software that is used to process byte streams of data. The or-
ganization would like to create flexible software that can be reconfigured for a variety of applica-
tions and platforms (for our purposes, we can think of “platforms” as processors). For example,
one application might be to support instrumentation for an automobile that would include data
streams that originate with sensors and terminate in the cabin of the auto with a display of tem-
perature, oil pressure, velocity, and so forth. Some subset of filters for this application might be
used in aviation, space, or maritime applications. Another application might be in the lab reading
streams of data from a file, processing the stream, and storing the data in a file. This would
support the development and debugging of instrumentation systems. While it is critically im-
portant to support reconfiguration, the system must also process streams of data as quickly as
possible. To meet these challenges, the architect has decided to design the system around a
pipe-and-filter architectural pattern. From a dynamic perspective, systems would be structured
as shown in the following examples.

Acknowledgment: D. Garlan & T. Lattanze @ CMU 2

The “data sources” in these systems are special filters that read data from sensors, files, or that
generate data internally within the filter. All filter networks must start with a source. The “filters”
shown in these examples are standard filters that read data from an upstream pipe, transform
the data, and write data to a downstream pipe. The “data sinks” are special filters that read data
from an upstream filter, but write data to a file or device of some kind. All filter networks must
terminate with a sink that consumes the final data. Note that streams can be split and merged
as shown in these examples.

The organization’s architect has developed a set of classes to facilitate the rapid development of
filters and applications that can be quickly tested and deployed. These libraries have been pro-
vided to you. In addition there are several examples that have been provided to illustrate the
use of these classes. The class structure (static perspective) for filters is as follows:

 data source data sink filter data flow

Legend

Filter 1 Filter 2 Filter 3

Filter 1 Filter 2

Filter 3

Filter 4

Filter 1 Filter 2

Filter 3

Filter 4

Example 1:

Example 2:

Example 3:

FilterFrame-
work:

FilterTemplate:

Standard Filter

FilterFrame-
work:

SourceFilterTemplate:

Source Filter

FilterFrame-
work:

SinkFilterTemplate:

Sink Filter

filter boundary

class

Class A inher-
its from class
B

Legend

A

B

Acknowledgment: D. Garlan & T. Lattanze @ CMU 3

The FilterFramework class is the base class for all filters. It contains methods for managing the
connections to pipes, writing and reading data to and from pipes, and setting up the filters as
separate threads. Three filter “templates” have been established to ease the work of creating
source, sink, and standard filters in a consistent way. Each of these filter templates describes
how to write code for the three basic types of filters. Note that the current framework does not
support splitting or merging the data stream. A fourth template, called the “PlumberTemplate”
shows how pipe-and-filter networks can be set up from the filters created by developers. The
“Plumber” is responsible for instantiating the filters and connecting them together. Once done
with this, the plumber exits.

Data Stream format

The system’s data streams will follow a predetermined format of measurement ID and data point.
Each measurement has a unique id beginning with zero. The ID of zero is always associated
with time. Test files have been provided that contain test flight data that you will use for the pro-
ject. The file data is in binary format – a data dump tool is provided to help read these files. The
table below lists the measurements, IDs, and byte sizes of the data in these files.

ID Data Descriptions and Units Type Number of
Bytes

N/A Measurement ID: Each measurement has an ID which
indicates the type of measurement. The Measure-
ment IDs are listed in this table in the left column.

Integer 4

000 Time: This is the number of milliseconds since the
Epoch (00:00:00 GMT on January 1, 1970).

long Inte-
ger

8

001 Velocity: This is the airspeed of the vehicle. It is
measured in knots per hour.

Double 8

002 Altitude: This is the vehicle’s distance from the surface
of earth. It is measured in feet.

Double 8

003 Pressure: This is atmospheric pressure external to the
vehicle. It is measured in PSI.

Double 8

004 Temperature: This is the temperature of the vehicle’s
hull. It is measure in degrees Fahrenheit.

Double 8

005 Pitch: This is the angle of the nose of the vehicle rela-
tive to the surface of the earth. A pitch of 0 indicates
that the vehicle is traveling level with respect to the
earth. A positive value indicates that the vehicle is
climbing; a negative value indicates that the vehicle is
descending.

Double 8

Data in the stream is recorded in frames beginning with time, and followed by data with IDs be-
tween 1 and n, with n≤5. A set of time and data is called a frame. The time corresponds to when
the data in the frame was recorded. This pattern is repeated until the end of stream is reached.
Each frame is written in a stream as follows:

Frame 1 ID: 000 Time ID: 001 Data … ID: n Data

Frame 2 ID: 000 Time ID: 001 Data … ID: n Data

:

Frame F ID: 000 Time ID: 001 Data … ID: n Data

Acknowledgment: D. Garlan & T. Lattanze @ CMU 4

Installing the Source Code

First, extract the files from “lab1.zip” file into a working directory. You will see four directories:
Templates, Sample, DataSets, HexDump. The Templates directory contains the source code
templates for the filters described above. The DataSets directory has all of the test data that you
will need. The directory HexDump contains a utility that will allow you to read through the con-
tents of the binary data files. The directory Sample contains a working pipe-and-filter network
example that illustrates the basic framework. To compile the example in the Sample directory,
open a command prompt window (or start a Linux command line terminal), change the working
directory to Sample, and type the following:

...\assignment1\sample> javac *.java

The compile process above creates the class files. After you compile the system, you can exe-
cute it by typing the following:

...\assignment1\sample> java Plumber

Sample is a basic pipe-and-filter network that shows how to instantiate and connect filters, how
to read data from the Flightdata.dat file, and how to extract measurements from the data
stream.

The output of this example is measurement data and time stamps (when each measure was
recorded) – all of this is written to the terminal. If you would like to capture this information to
assist you in debugging the systems, you can redirect it to a file as follows:

...\assignment1\sample> java Plumber > output.txt

In this example, the output is redirected to the file output.txt.

Of course, to compile and run Sample, you may use Eclipse or any other IDE you prefer.

Acknowledgment: D. Garlan & T. Lattanze @ CMU 5

Part 1: Design and Construction

Your task is to use the existing framework as the basis for creating three new systems. Each
new system has one or more requirements. In each system, please adhere to the pipe-and-filter
architectural pattern as closely as possible. Make sure that you use good programming practic-
es including comments that describe the role and function of any new modules, as well as de-
scribing how you changed the base system modules. Good programming practices will be ap-
preciated.

System A

Create a pipe-and-filter network that will read the data stream in FlightData.dat file, convert the
temperature measurements from Fahrenheit to Celsius, and convert altitude from feet to meters.
Filter out the other measurements and write the output to a text file called OutputA.dat. Format
the output as follows:

Time: Temperature (C): Altitude (m):

YYYY:DD:HH:MM:SS TTT.ttttt AAAAAA.aaaaa

System B

Create a pipe-and-filter network that does the same conversions as System A but keeps all
fields. In addition, System B should filter “wild jumps” out of the data stream for altitude. A wild
jump is a variation of more than 100m between two adjacent frames. For wild jumps encoun-
tered in the stream, interpolate a replacement value by computing the average of the last valid
measurement and the next valid measurement in the stream. If a wild jump occurs at the end of
the stream, replace it with the last valid value. Write the output to a text file called OutputB.dat
and format the output as shown below, annotating any interpolated values with an asterisk:

Time: Temperature (C): Altitude (m): Pressure (psi):

YYYY:DD:HH:MM:SS TTT.ttttt AAAAAA.aaaaa PP:ppppp

YYYY:DD:HH:MM:SS TTT.ttttt AAAAAA.aaaaa* PP:ppppp

YYYY:DD:HH:MM:SS TTT.ttttt AAAAAA.aaaaa PP:ppppp

 : : : :

Write the records with rejected wild jumps to a second text file called WildPoints.dat using the
same format as above.

System C

Create a pipe-and-filter network that merges two data streams. The system should take as input
the SubSetA.dat file and the SubSetB.dat. Both of these files have the same 5 measurements
as FlightData1.dat, which was recorded at different, but overlapping times. The system should
merge these two streams together and time-align the data – that is, when the files are merged
the single output stream’s time data should be monotonically increasing. This is illustrated below
with a simple example. Here Stream C represents the merger of Stream A and Stream B.

Acknowledgment: D. Garlan & T. Lattanze @ CMU 6

 In addition to merging the streams, you must filter the
resulting data stream (Stream C) as follows:

1) Filter out pressure measurement wild points where
the value exceeds 90 psi, or is less than 45 psi (yes
this is intentionally different from System B). Write
these values to a “rejected” file as required in System
B. Replace any filtered wild points with interpolated
values as you did in System B.

2) Filter out all measurements where: pitch exceeds
10 degrees and pressure exceeds 65 PSI and write
them to another file using the same format used in
System B. Replace any filtered wild points with inter-
polated values as you did in System B.

Packaging and submitting Part 1

 Systems A, B, and C should be clearly separated, both in terms of implementation and write-
up (as described above). Place each implementation in a different folder for each of the sys-
tems.

 Part 1 must be emailed in a compressed folder named as LAB1-yourLastName.

 We will test your programs on our computers with test data sets that are similar to the data

sets you have be provided with, but that may include more fields and or different data. You
must clearly describe how to run your program. If you have any questions, please ask the
instructor.

Part 2: System Analysis

Please answer the following questions. Each question has several parts. Make sure that you
answer each question completely in your write-up:

1. For each system A, B, and C:

 Describe the architecture of the system. Be sure to include appropriate views of the
system. You are free to use whatever notations you prefer, but you must follow good
standards of architectural documentation.

 Are there other possible solutions that you could have adopted? What made you de-
cide on your solutions over these other possible solutions?

2. Given your design and implementation of pipe-and-filter systems used for this assign-
ment:

 To what extent do your implementations (A, B, and C) differ from what is implied by
an idealized notion of pipes and filters? Explain why and the impact it might have on
systemic properties of your systems.

 Is it possible for a developer to create circular dependencies in your systems? If so,
what might be the result of executing a system with circular dependencies?

:
10:23:21.912
10:23:23.014
10:23.25.256
:

:
10:23:22.002
10:23:24.714
10:23.26.681
:

Stream A

Stream B

:
10:23:21.912
10:23:22.002
10:23:23.014
10:23:24.714
10:23:25.256
10:23.26.681
:

Stream C

Acknowledgment: D. Garlan & T. Lattanze @ CMU 7

Grading Criteria

Your solutions and commentary will be graded based upon:

• The quality and contents of your write-up: this includes describing the design, discus-
sions of trade-offs, and your discussion of the implications of changes to the system’s
architecture and the inherent systemic properties. Be clear, concise, and complete. This
also includes the proper use of English prose, absence of grammar problems and mis-
spellings.

• The consistency between the design representations and the implementation.
• The degree to which your solutions adhere to the pipe-and-filter architectural pattern

where possible to do so.
• The extent to which deviations from the pipe-and-filter architectural pattern (as well as

their effects) are clearly explained.
• Professionalism, which includes the quality of the report, timely submission, and well-

structured and documented source code.
• The correct operation of the solutions - we will test your solutions with our test data.

Each assignment will be weighted as follows (100 points maximum):

Part 1: Implementation and Write-up

• Java implementation of System A: 20 points
• Java implementation of System B: 25 points
• Java Implementation of System C: 30 points

Part 2: Write-up

• Question 1: 15 points
• Question 2: 10 points

