
Enterprise Application Integration Using Extensible Web Services

Venkat N Gudivada
Department of Engg. & Computer Science

Marshall University
Huntington, WV 25755
gudivada@marshall.edu

Jagadeesh Nandigam
School of Computing & Information Systems

Grand Valley State University
Allendale, MI 49401
nandigaj@gvsu.edu

Abstract

This paper describes an approach to Enterprise Appli-
cation Integration (EAI) using extensible Web services. The
approach is demonstrated by building a real-world appli-
cation for EAI in the financial services domain. Business
drivers for and approaches to EAI are presented first. The
manifestation of Web services in general and their role in
EAI are discussed next. Financial services domain char-
acteristics are presented. Business drivers that entail a
strong need for functional extensibility in the financial ser-
vices domain are described. Our proposed architecture for
EAI which addresses functional extensibility is described.
This architecture is based on the notion of extensible Web
Services. We then present our implementation of the archi-
tecture and practical challenges encountered in EAI. A brief
discussion of how our work relates to the current research
in Service-Oriented Computing (SOC) and Semantic Web
concludes the paper.

1 Enterprise Application Integration

Typically large enterprises are supported by hundreds of
applications. Many of these applications were written in
COBOL on mainframe computers and are referred to as
legacy systems. Enterprises critically depend on legacy sys-
tems for their day-to-day business operations. It is not un-
usual for large brokerage firms in the financial services sec-
tor to appropriate annual legacy maintenance budget in the
order of billions of dollars.

Therefore, it is natural for the enterprises to explore
ways to reduce legacy maintenance costs. Two primary
approaches were pursued. The first approach involves re-
placing legacy systems with a new application. The latter
is designed for better interoperability with other systems,
and more importantly easier to maintain and evolve. En-
terprise Resource Planning (ERP) systems were introduced
to address this need. Though ERP systems were well re-

ceived initially, enterprises are increasingly turning away
from them due to exorbitant total cost of ownership (TCO)
— licensing, implementation, and maintenance costs.

In the second approach, legacy system replacement was
attempted by developing new in-house systems. This ap-
proach also met with little success. This is where Enter-
prise Application Integration (EAI) comes into play. Instead
of replacing legacy systems, EAI leverages legacy system
functionality in meeting the new requirements.

During the last few years, there has been intense thrust
on leveraging legacy applications — endowing them with
interoperability features for the Web environment. Recent
interest in Semantic Web [3] and Service-Oriented Comput-
ing [6] has accelerated the thrust on EAI.

In this paper we describe an approach to EAI using ex-
tensible Web services. Section 2 presents approaches to
EAI. Manifestation of Web services in general and their
role in EAI are discussed in section 3. Financial services
domain characteristics are presented in section 4 from the
perspective of functional extensibility; and section 5 dis-
cusses the notion and types of extensibility. An architecture
for EAI using extensible Web services and the implementa-
tion of the architecture are described in section 6. The next
section concludes the paper by relating the work presented
here with the current research in Service-Oriented Comput-
ing (SOC) and Semantic Web.

2 Approaches to EAI

There are two facets to EAI: integration type and what
is being integrated. There are two types of integration: in-
ternal and external. Internal integration primarily aims at
establishing interoperability among the internal systems of
an enterprise, whereas external integration encompasses in-
teroperability with the systems outside the enterprise as well
— partner, vendor, counterparty, and customer systems. In-
ternal integration is relatively easier in that enterprise infras-
tructure and other technology standards, some homogene-
ity in applications, and more secure operating environment

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

come to the rescue.
The things that are being integrated may include just the

information, business processes [4], or both. Information
integration focuses on providing an enterprise-wide inte-
grated view of data entities to promote data integrity, shared
semantics and consistent usage, and rapid application devel-
opment. Business process integration encompasses coordi-
nating and executing a sequence of steps to accomplish a
business task; each step may need to be executed by a dif-
ferent application.

Approaches to EAI range a broad spectrum: from enter-
prise data integration (EDI), inter-application communica-
tion, to generic shared services. EDI is better viewed as an
infrastructure to support inter-application communication
and generic shared services; to provide a unified and consis-
tent view of critical data entities, and provide information
connectivity across multiple platforms. Inter-application
communication is often designed as point-to-point applica-
tion interfaces; entails significant maintenance costs espe-
cially for large organizations. Generic and shared services
approach aims at achieving EAI via an array of carefully
designed and loosely coupled resilient components; tries
to minimize point-to-point application interfaces. Our ap-
proach to EAI presented in this paper is based on providing
generic and shared services.

Approaches to internal integration include data ware-
housing; virtual data warehousing; remote procedure calls
(RPCs), including SOAP-based ones; method signatures
— Component Object Model (COM), CORBA, and Java
Remote Method Invocation (RMI) calls; XML documents;
Message-Oriented Middleware (MOM) messages.

The data warehousing approach integrates disparate data
sources by developing a global schema and providing a con-
sistent and unified API to the global schema. Data ware-
houses tend to be large in size, expensive to develop, and
entail greater risk since the development cycle tends to be
longer. Currency of data is an issue since the warehouse is
refreshed only once or a few times a day for performance
reasons. Furthermore, data warehouses typically don’t sup-
port transactions on the global schema since uniquely map-
ping the transaction data to the underlying data sources as
a distributed transaction is not possible in the general case.
For this reason, data warehouses are typically used in read-
only mode to support decision support applications. We re-
fer to this approach as physical data warehousing.

Virtual data warehousing was introduced to alleviate
some of the problems associated with physical data ware-
housing — warehouse size and data currency. Virtual data
warehouse also employs a global schema, but it is not pop-
ulated. Applications specify data access requests as queries
on the global schema. Like the physical data warehousing
approach, the virtual approach is also limited in its capabil-
ity to perform transactions on the global schema.

Remote Procedure Call (RPC) enables an application
to invoke a function in another application. The applica-
tions typically run on two different computers. The level
of abstraction manifested in RPC is low — the program-
mer need to explicitly address issues related to the differ-
ences in the representation of data and network communi-
cation protocols. Common Object Request Broker Archi-
tecture (CORBA), an RPC, is Object Management Group
(OMG) standard for application interoperability and inte-
gration. Because of its heavy foot-print, steep learning
curve, and lack of a productive development environment,
industry didn’t rally behind CORBA.

Component Object Model (COM)/Distributed Compo-
nent Object Model (DCOM) was Microsoft’s foray into
component-based application development and RPC-based
distributed computing. Like CORBA, COM/DCOM was
also exceedingly complex and there was no provision for
component versioning in deployment. COM/DCOM is
limited to Windows operating system only. Java Remote
Method Invocation (RMI) was introduced by Sun Microsys-
tems for RPC-based interoperability between applications
developed using the Java programming language. Though
there is no platform dependence in terms of hardware and
operating systems, there is the Java langauge dependence.

XML documents have become a preferred format for
data representation in SOAP-based RPCs. MOM-based ap-
plication integration was championed by IBM via its Mes-
sage Queue (MQ) product line. Applications communicate
by sending and receiving messages. An application request-
ing the services of another application explicitly encodes
such requests as messages. One or more queues are associ-
ated with the applications and the latter monitor the queues
for service requests and responses. Of all the approaches
mentioned, MQ based approach has been successful since
the messaging software is available for virtually any plat-
form.

Technologies and tools for external as well as integra-
tion include message-oriented middleware (MOM); extrac-
tion, transformation and loading (ETL) tools; business pro-
cess management (BPM) tools; integration broker suites —
Tibco Softwares ActiveEnterprise, IBMs WebSphere MQI,
SeeBeyonds e*gate, Microsofts BizTalk, WebMethods En-
terprise, and Vitria Technologys BusinessWare; and Web
services.

3 Web Services and EAI

A Web Service is an interoperable unit of application
logic that transcends programming language, operating sys-
tem, network communication protocol, and data representa-
tion dependencies and issues. It is an infrastructure for de-
veloping and deploying distributed applications. Web Ser-
vices are typically intended for applications consumption.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

This is in contrast with contemporary Web applications,
which are meant for human users.

Web Services are based on the following industry stan-
dards: eXtensible Markup Language (XML), Simple Object
Access Protocol (SOAP), Web Services Description Lan-
guage (WSDL), and Universal Description, Discovery, and
Integration (UDDI). XML is to data representation what
HTML is to rendering of Web documents. SOAP is an
XML-based message format for exchanging information
between computers. WSDL is used to describe a Web ser-
vice, specify its location, and describe the operations it
exposes. WSDL-based document provides enough infor-
mation about how to interact with the target Web service.
UDDI Registry is a collection of information on all the reg-
istered Web Services. It is a free public registry — vendors
publish their Web services and consumers search for appro-
priate Web Services.

Web Services manifest in the following ways: internal
and external application integration, component-based soft-
ware development [7], and software as a service. Internal
integration is effected by developing SOAP interfaces to in-
ternal legacy applications. Issues here include developing a
domain ontology, specification of core services, enhancing
a service, and composing a new service in terms of exist-
ing services. Applications can then communicate with each
other by exchanging SOAP messages using HTTP over in-
tranets. External integration is quite similar except that se-
curity is an additional issue that need to be addressed.

Though the idea of component-based software is not
new, it was dogged by problems that arose due to non-
transparency of programming language, operating system,
data representation, and network communication protocol
related idiosyncracies and dependencies. If the compo-
nents are available as Web Services, the interoperability is-
sues will go away to a large extent. This ushers in a new
paradigm for software development — composing appli-
cations by configuring and integrating truly interoperable
components.

A few years ago, there was a lot of exuberance about Ap-
plication Service Provider (ASP) model. Under this model,
organizations can rent applications hosted by the ASP ven-
dor without worrying about hardware purchase, software
licensing and upgrades, and keeping the applications up
and running round the clock. For various reasons the ASP
model has died prematurely. It is expected that Web Ser-
vices will bring renaissance to the ASP model. This ob-
servation is based on the fact that industry convergence on
standards is crucial to the economic viability of the ASP
model.

4 Application Domain Characteristics

Financial Services industry is one of the domains used
by Information Technology (IT) companies as a proving
ground to demonstrate that their applications are of enter-
prise class. It is often said that if a product withstands the
vigor of the Wall Street, it can succeed elsewhere easily.
The domain is characterized by massive data volumes, nar-
row processing windows, and stringent performance and
availability requirements. Legacy systems are the norm
rather than an exception. The data elements in the domain
are interrelated in complex ways and so do the business
processes. The situation is further exacerbated by frequent
changes in regulatory and compliance requirements besides
the need for functional enhancements.

The type of data maintained about financial instru-
ments include time series (e.g., price history), real-time
price quotes, fundamental or indicative data (e.g., yield to
maturity, coupon rates and payment frequency), research
(e.g., quality ratings, future outlook), and news. Data is
also maintained about various market participants and their
roles including broker/dealers, stock exchanges, Over the
Counter (OTC) markets, issuers of financial instruments and
their ratings, clearing houses, custodians, transfer and pay-
ing agents, depositories, and regulatory and compliance or-
ganizations. The disparate IT systems used by the market
participants come into play in the life cycle of a trade and
post-trade operations — order entry and routing, execution,
confirmation, clearing and settlement, corporate action pro-
cessing, custody and portfolio management.

Currently, the life cycle of a trade is three business days
after the trade has been executed (referred to as T +3). The
longer it takes for a trade to settle, the higher is the risk for
the market participants. For this reason, there is a mandate
from the Security Industry Association (SIA) that a trade
life cycle be reduced to one day after the trade (i.e., T + 1)
by the year 2007. During the course of the life cycle, trade
information flows through several disparate systems, both
in-house and external. A large portion of the cost of a trade
is attributed to the manual processes involved in feeding
data from one system to another. An industry-wide initia-
tive — referred to as Straight Through Processing (STP) —
has been in place for several years to automate these man-
ual processes to reduce the number of trade failures as well
as to realize the T + 1 initiative. However, progress has
been slow even for internal integration. Thus, Web Services
technology has tremendous potential in achieving STP by
integrating in-house and external systems.

Given frequent changes to business processes and the
need for incorporation of regulatory and compliance re-
quirements, it is rather mandatory for IT systems in finan-
cial services industry to feature functional extensibility. The
latter is an architectural mechanism to extend the functional

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

capabilities of a system with minimal or no changes to the
code. Functional extensibility is also needed to address
the following: multi-entity processing, user-specifiable ac-
counting options, and account service options, among oth-
ers. Multi-entity processing enables transactions of the
same kind be processed differently to reflect the business
processes of the organization that originated the transaction.
For example, all Visa credit card transactions are uniformly
processed by the same system, yet the processing reflects
the terms and conditions of the account related to the trans-
action; and accounts are issued by various financial institu-
tions. In other words, functional extensibility is a means for
mass customization of information systems.

User-specifiable accounting options include multi-
currency or single-currency, principal and income separa-
tion, choice of amortization and accretion methods, lot ac-
counting, carrying and cost value types desired, and lot dis-
position methods. Account service options comprise chosen
risk management strategy, owner and regulatory compli-
ance, discretionary and non-discretionary portfolio manage-
ment, performance measurement and attribution, account
valuation methods, and period-end statements. In summary,
IT systems for financial services industry needs to be highly
extensible and configurable to address the above functional
requirements.

5 Notions of Extensibility

The genesis of extensibility traces back to the program-
ming languages of the 1970s. User-defined data types and
abstract data types were introduced as an extensible mech-
anism to extend the intrinsic data types of the language.
The extensibility notion also appeared in relational database
management systems in the area of optimizing queries that
involve user-defined data types. ERP systems architecture
is centered around functional extensibility via configuring
the application modules to reflect an organization’s busi-
ness processes. Of late, extensibility is also investigated
in the area of operating systems — dynamically configur-
ing kernel services to suit application-specific characteris-
tics performance-wise [9].

There are two types of extensibility: dynamic and static.
In dynamically extensible systems, code components can be
added to a running system in an arbitrary way. Web browser
is an example of a dynamically extensible application —
can load and execute plug-ins and applets on the fly. Se-
curity is of paramount concern is such systems. Statically
extensible systems, in contrast, achieve extensibility by em-
ploying an array of techniques ranging from configuring ini-
tialization parameters to developing new code.

Functional extensibility is viewed as a continuum. At
one end of this continuum is a technique referred to as
white labeling or personalization. Internationalization is-

sues such as language and locale come under white label-
ing. This is the easiest to achieve via resource files as
exemplified in numerous Windows applications. The next
one in the continuum is based on user modeling and pro-
filing. Using this technique, an application’s behavior in
certain functional areas is dynamically governed by cumu-
lative accumulation and adjustment of past user actions and
preferences. These aspects are best exemplified in ama-
zon.com web site’s book recommendations feature. The
next in the continuum pertains to functional extensibility
via code changes. Applications development by making
use of class libraries and design patterns makes this ap-
proach a little more palatable. True component-based ap-
plication development achieves functional extensibility pri-
marily by adding and configuring new components. It is es-
sential that such components be interoperable, configurable,
and extensible. ERP applications achieve pre-defined func-
tional extensibility via rules-driven processing governed by
business process-specific meta-data. Extensibility by inte-
grating product-lines and domain-specific languages is pre-
sented in [2].

At the other end of the continuum are approaches that
enable functional extensibility via a declarative specifica-
tion framework. More specifically, our approach to EAI and
functional extensibility is achieved via the notion of exten-
sible Web services, which is described in the next section.
Since functional accuracy is the essence of information sys-
tems in the financial services domain, it is necessary to em-
ploy static extensibility.

6 An Architecture for EAI

Our approach to EAI and functional extensibility is re-
alized by using an architecture named EWSA (Extensible
Web Services Architecture). First we describe the opera-
tional context for EWSA. The latter needs to integrates sev-
eral legacy applications. Each application sports its propri-
etary API. However, all applications use the same relational
data model. The data model has in excess of one thousand
tables and some of the tables have over 200 columns. The
data model is comprehensive for the domain, but it is com-
plex. The tables are highly interrelated (via foreign key re-
lationships) — beneficial for data integrity but counterpro-
ductive for transaction rates. We term this data model as
Comprehensive Relational Data Model (CRDM). Ad hoc
queries is a primary mode of retrieving information by end-
users from CRDM since the information content requested
in the queries keeps changing over a period of time. There
is a steep learning curve for the users even to understand
a subject area in CRDM. Updates to the CRDM database
are always routed through the legacy systems, as the latter
abstract business processes and update semantics. Prior to
the implementation of EWSA, application developers need

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

to master the APIs of the legacy systems as well as the
CRDM. Various internal departments in the enterprise de-
velop applications, which leverage the legacy systems; and
these applications operate in an Intranet environment.

Therefore, the objectives for EWSA are:

• Leverage legacy systems.

• Provide an integrated functional view of legacy sys-
tems and CRDM as domain-level, task-oriented,
sharable atomic services.

• The services should be delivered via multiple delivery
channels.

• Services should be configurable at multiple levels of
granularity — service level, service group level, and
system level.

• Services should be extensible.

• It should be possible to create a new service by modify-
ing an existing service, or by declaratively composing
the existing services.

• The integration architecture should promote platform
independence and offer deployment options.

• It should be possible to programmatically use services
with any industry standard programming languages.

The major tasks in realizing EWSA are: establishing a do-
main ontology; specifying and implementing core services;
implementing the EWSA infrastructure; and developing a
tool set for automating the various subtasks in the specifica-
tion, implementation, and maintenance of services. These
tasks are described in the following subsections.

6.1 Domain Ontology

Since our domain is complex and vast, establishing and
consistently using a shared vocabulary across disparate ap-
plications is crucial to the integration effort. Such a vo-
cabulary is referred to as domain ontology. Ontologies en-
compass more information than what is found in data dic-
tionaries — data element name; semantic meaning; context-
dependent usage; relationship to other elements; constraints
and conditions (e.g., edit and validate checks); how the el-
ement value is derived (e.g., enumeration, executing a SQL
query, a database stored procedure, or an external procedure
invocation); and CRDM place holder (i.e., table/column
name), if applicable. The domain ontology is central to
EWSA. The elements of the ontology are referred to as
Business Common Names (BCNs). The ontology is imple-
mented as an Oracle database with suitable API. Industry
standards or activities related to our ontology include ISO
15022 Data Field Dictionary, SWIFT Standards Financial
Dictionary, and Market Data Definition Language (MDDL).
However, the focus of these activities is narrower in scope.

6.2 Specification of Core Services

One of the difficult tasks in EWSA is identifying and
specifying a set of core services. The services should be
neither too primitive nor too coarse. There is no practical
value if the services are too granular. If they are too coarse,
their use in composing new services is greatly diminished.
The situation here is somewhat akin to fundamental trans-
formations in computer graphics, where any complex trans-
formation can be expressed in terms of three primitive but
fundamental transformations — translation, scaling, and ro-
tation.

Given the complexity of the domain, it is rather unusual
for any one business analyst to understand the domain in its
entirety. A collective effort of business analysts and system
developers was required for identifying meaningful set of
core services. We have taken a role-based, task-oriented
approach to the identification and characterization of core
services. For example, the various domain tasks performed
by a corporate action processing end-user provides enough
information and context to come up with a set of services
for this sub-domain.

Specification of a service encompasses identifying the
BCNs needed for the task and associated business process
that manipulates or uses these BCNs. Services are specified
using the domain ontology in XML notation. The set of
BCNs retrieved by a service are collectively referred to as
an information block. Once the set of core services are iden-
tified for the various sub-domains, they were reconciled and
consolidated. The effort involved in implementing a service
depends on whether the service simply retrieves informa-
tion from the CRDM or updates the information as well. In
the latter case, the updates need to be processed through the
legacy applications (more details on this later).

6.3 Extensible Web Services Architecture

EWSA is shown in Figure 1. EWSA services are deliv-
ered via three channels — Web service, message queues,
and .NET assembly. Corresponding to each of the deliv-
ery channels is an adapter component residing in Service-
Provider. The latter functions as an entry point into EWSA.
It intercepts all service requests coming through the deliv-
ery channels, and hands them over to ProcessOrchestrator,
which has total responsibility for processing a service re-
quest. ProcessOrchestrator has the requisite knowledge to
process all services hosted by the EWSA. Depending on
the service request type, fulfilling the request may comprise
several steps, and executing these steps in a specific order.

There are two categories of services: query and up-
date. Query services just retrieve the data from CRDM.
Update, on the other hand, alters the CRDM data via legacy
and other applications. Consider the query-type service re-

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

Figure 1. EWSA Architecture

quests. They are implemented by one of three ways: ex-
ecuting a pre-defined SQL query, executing a SQL query
received as service parameter data — dynamic SQL, and
executing a database stored procedure. The query service
requestor can specify any of the following three formats for
receiving the results: ADO record set, .NET dataset, and hi-
erarchical XML. The last format is not just turning a tabular
format data by inserting appropriate XML tags. It involves
constructing a truly hierarchical XML document by discov-
ering multi-level parent-child relationships in the data. This
not only eliminates the redundancy in the data returned, but
more importantly adds value by explicitly delineating hier-
archical relationships among the data elements.

AdHocSearch component generates a SQL query on the
fly for retrieving a given set of BCNs. Besides BCNs, Ad-
HocSearch requests optionally specify filter conditions on
the BCNs (e.g., MaturityDate > Jan-10-2005). However,
the service requester is relieved from specifying the CRDM
table/column mappings for the BCNs and database table
join conditions, which are automatically discovered by the
AdHocSearch component.

The DataAccessor component provides a generic mech-
anism for executing SQL and database stored procedures
against OLEDB, ADODB, and ODBC data sources besides
Microsoft SQL Server.

Next consider the update category service requests.
Since the updates are required to go through the legacy

applications, they are more complex relative to query-type
services. The Update component employs two other com-
ponents: Translator and Transport. Recall that the APIs
available for accessing the legacy applications are unique
to them, and often are based on proprietary message for-
mats. The APIs require that the input parameters be en-
coded using pre-specified message structures. The princi-
pal function of the Translator component is to generate a
suitable message structure to invoke the relevant API in the
target application. Although the overall message structure
is pre-determined for a specific update service, the actual
structure and length of an instantiated message depends on
the parameter values supplied by the service invoker. Mes-
sage structures are declaratively specified using meta-data.
Thus, message structures for new services can be introduced
without any changes to the source code of EWSA.

Once the actual message is generated, it is transported to
the application using a network protocol that the application
is compatible with. This is the core function of Transport
component. For some applications, more than one choice
is available (e.g., TCP/IP, IBM MQ). The transport proto-
col to be used is specified during the service configuration.
The Update component is capable of communicating with
applications in both synchronous and asynchronous modes.
The mode is actually dictated by the application. Typi-
cally, asynchronous mode is used for communicating with
message-based APIs; synchronous mode is used otherwise.

ConfigMgr component is used for configuring a service,
a group of services, or all the services as a unit (i.e., system
level). Configuration information includes database server
type, connection string, database driver, maximum number
of records to be returned, location of XML files for system
initialization, trace flags, and specifying what information
goes into a trace file when the trace is enabled. Trace feature
is used in debugging services.

UtilMgr is a collection of utility classes for accessing
and manipulating XML Schemas, and XML and trace files.

6.4 Enhancing an Existing Service

An existing service can be declaratively enhanced or cus-
tomized in two ways. First, the data returned by a service
can be configured to include only a subset of the BCNs as-
sociated with a service. By default, all the BCN values
included in the service specification are returned. If the
service requestor needs only a small subset of the BCNs,
this modification helps to improve the response time. Ser-
vices can also be declaratively enhanced by associating pre-
and post-processing operations. The operations are imple-
mented as .NET assemblies, and are executed before and
after the service execution. These assemblies are externally
developed by implementors desiring to customize an ex-
isting service. Pre-processing is typically used for special

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

Figure 2. ServiceBrowser

transformations on XML encoded parameter data. Like-
wise, post-processing operations are used to transform the
service results to suit local needs.

6.5 Composing a New Service

A new service is composed from existing services in two
ways, which are referred to as static and dynamic compos-
ite services. Users declaratively specify static composite
service in the form of a script (in XML). Such a script es-
sentially lists various services to be executed and specifies
how the results from executing one service are mapped as
inputs to other services. This is a powerful feature to effi-
ciently realize functionally higher-level services tailored to
a specific purpose. Dynamic composite service is similar to
its static counterpart, except that the composition script is
not known until the run-time.

In both types of composition, it is possible to simply ex-
ecute a list of services as a unit and return multiple result
sets in one XML document. Under this scenario, results of
executing a service are not mapped as input parameters to
other services in the unit. The resulting XML document in-
cludes information to correlate service requests with their
corresponding execution results. This also enables specify-
ing input parameters that are common to multiple services
only once.

6.6 Integrated Tool Set

As EWSA is meta-data driven, it features graphical user
interface (GUI) tools for meta-data generation and main-
tenance. It also provides tools for service specification;
browsing BCNs and services; service configuration; com-
posing an ad hoc SQL query using the BCNs; and auto-
mated stored procedure generation.

Figure 3. BCN Based Ad Hoc Database Search

ServiceBrowser is a tool for searching and browsing ex-
isting services and is depicted in Figure 2. Search can be
based on keywords associated with the service or service
name. It is also possible to browse through all the services
in alphabetical order of service names. Clicking on any
service name resulting from the search, yields the follow-
ing information: service description (service name, a brief
description, BCNs that are required as input parameters,
BCNs that are returned in the result, and keywords associ-
ated with the service); service specification (an XML based
specification of the services including its configuration in-
formation); request schema (an XML schema for the doc-
ument, which is required as a parameter to invoke the ser-
vice); request sample (an instantiation of request schema);
response schema (an XML schema for the document, whose
structure is used to return the execution results); and re-
sponse sample (an example XML documents showing the
returned results). All of the above pieces of information is
meant for the consumers of the service, except the second
one, which is of interest to the service implementors.

Tools are also available for searching and browsing the
BCNs, configuring services, BCN based ad hoc search,
database stored procedure generation, and testing of ser-
vices. BCN based ad hoc database search tool is shown
in Figure 3. It allows a user to select one or more BCNs for
retrieval, and specify constraints on them — predicates on
the selected or other BCNs. Using this information, it con-
structs an appropriate SQL query on the fly and generates
service request XML document corresponding to the SQL
query. It also enables the user to test the service request by
invoking EWSA. The interface also allows for saving the ad
hoc query requests and replaying them at a later time.

The tool for testing services is shown in Figure 4. The

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

Figure 4. ServiceTest

tool generates an XML request document for a chosen ser-
vice, executes the service, and displays execution results.

7 Conclusions

The task of identifying core business abstractions or
services at the right level of granularity turned out to be
the most challenging. An incremental, role-based, task-
oriented approach we embarked upon proved quite success-
ful.

EWSA based EAI demonstrated significant productiv-
ity improvements for application developers. It effectively
transcended programming language, operating system, and
network communication related issues. The services pro-
vided a true business-oriented abstraction of the domain,
thus freeing the developers to focus more on the system
implementation. Two applications based on EWSA are in
production.

Because of the data-intensive nature of the application,
some services can take significant amount of time to exe-
cute. Under such situations, asynchronous mode of service
execution seems desirable. Though asynchronous invoca-
tion of services is intrinsic to the IBM MQ based deliv-
ery channel, we haven’t investigated issues that might arise
in asynchronous invocation for the Web Services delivery
channel. Another issue that remains to be investigated is in-
corporating state information into Web Services. Currently,
all the services are stateless. Exploring the approaches
used in the recently proposed Business Process Execution
Language for Web Services (BPEL4WS) is a good starting
point in this direction.

Another factor that would help with performance is
caching service execution results in EWSA. Especially ser-
vices that retrieve reference data are good candidates for
caching. Reference data doesn’t change frequently. Imple-

menting a cache synchronization mechanism will be con-
sidered in a future release of EWSA. Currently, our ap-
proach to EAI requires considerable technical expertise for
composing a new service. From a system developer per-
spective, though the approach entails significant productiv-
ity gains, our goal is to evolve the approach so that business
analysts themselves should be able to compose services.

The work presented in this paper complements the re-
cent research in Semantic Web, Service-Oriented Comput-
ing (SOC), and composing Web services [1, 5, 8]. In the
Semantic Web environment, applications are dynamically
weaved by composing loosely coupled shared services us-
ing domain ontologies. A primary aspect of SOC is in cre-
ating loosely coupled services, which publish their charac-
teristics — both functional and non-functional — in a stan-
dardized, machine readable format.

References

[1] S. Arroyo, R. Lara, J. M. Gomez, D. Berka, Y. Ding, and
D. Fensel. Semantic aspects of web services. In M. P. Singh,
editor, The Practical Handbook of Internet Computing, pages
31–1 – 31–17. Chapman & Hall/CRC, 2005.

[2] D. Batory, C. Johnson, B. MacDonald, and D. von Heeder.
Achieving extensibility through product-lines and domain-
specific languages: A case study. ACM Transactions on Soft-
ware Engineering and Methodology, 11(2):191–214, April
2002.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.
Scientific American, May 2001.

[4] F. Casati and A. Sahai. Business process: Concepts, systems,
and protocols. In M. P. Singh, editor, The Practical Hand-
book of Internet Computing, pages 32–1 – 32–15. Chapman
& Hall/CRC, 2005.

[5] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana.
The next step in web services. Commun. ACM, 46(10):29–34,
2003.

[6] M. N. Huhns and M. P. Singh. Service-oriented comput-
ing: Key concepts and principles. IEEE Internet Computing,
9(1):75–81, 2005.

[7] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov,
J. Lewis, D. P. Oliva, T. Sheard, I. Smith, and L. Walton. A
software engineering experiment in software component gen-
eration. In ICSE ’96: Proceedings of the 18th international
conference on Software engineering, pages 542–552. IEEE
Computer Society, 1996.

[8] E. Sirin, B. Parsia, and J. Hendler. Filtering and selecting se-
mantic web services with interactive composition techniques.
IEEE Intelligent Systems, 19(4):42–49, 2004.

[9] A. C. Veitch and N. C. Hutchinson. Kea – a dynamically
extensible and configurable operating system kernel. In IC-
CDS ’96: Proceedings of the 3rd International Conference on
Configurable Distributed Systems, page 236. IEEE Computer
Society, 1996.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

