
2/5/2012 

1 

Software Architecture 

Lecture 3 
Call-Return Systems 

 

João Pedro Sousa 

George Mason University 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 2 

last class 
data flow styles 

process control 

looping structure to control environment variables 

batch sequential 

sequential processing steps, run to completion 

typical of early MIS applications 

pipe & filter 

incremental transformation of streams 
Unix pipes and Yahoo pipes are special cases (sub-styles) 

data flow 

pipe & 
filter 

batch 
sequential 

process 
control 

Unix 
pipes 

Yahoo 
pipes 



2/5/2012 

2 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 3 SWE 443 – Software Architecture © Sousa 2012 Lecture 1 – Intro – 3 

today 
call-return styles 

data flow 
batch sequential 
dataflow network (pipe & filter) 

acyclic, fan-out, pipeline, Unix 
closed loop control 

call-and-return 
main program/subroutines 
information hiding – objects 
stateless client-server 
SOA 

interacting processes 
communicating processes 
event systems 

implicit invocation 
publish-subscribe 

data-oriented repository 
transactional databases 

stateful client-server 
blackboard 
modern compiler 

data-sharing 
compound documents 
hypertext 
Fortran COMMON 
LW processes 

hierarchical 
tiers 

interpreter 
N-tiered client-server 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 4 

today’s outline 

call-return styles 

single process flavors 

main-subroutine, layers, modules, objects 

distributed flavors 

components, tiers, cloud 

implementing distributed call-return 

large-scale distributed, open-system flavors 
SOA: later in the course 

Acknowledgment 
some of the material presented in this course is adapted from 17655, 

taught to the MSE at CMU by David Garlan and Tony Lattanze 



2/5/2012 

3 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 5 

in call-return styles 
consumer components invoke functionality 
in provider components 

usually the caller waits until an invoked service 
completes and returns results before continuing 

components depend on invoked functionality 
to get their own work done 

the correctness of each component may depend on 
the correctness of the functionality it invokes 

C P 
call 

return 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 6 

call-return has had many flavors 
throughout history 

subroutines 
decomposition of main program into processing steps  

functional modules 
aggregation of processing steps into modules 

abstract data types [Parnas] 
bundle operations and data, hide representations and other decisions 

objects 
sub-typing, polymorphism, dynamic binding of methods 

client-server 
distribution, tiers 

components 
multiple interfaces, advanced middleware services 

services 
late binding of providers 



2/5/2012 

4 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 7 

in call-return styles 
system topology comes in different flavors 

client-server 
star: clients call servers 

clients may register callbacks 

tiered 
hierarchical star: layer n calls layer n+1 

peer-to-peer 
no restriction 

components define one or more interfaces 

provides: a set of functionality that is offered 

requires: a set of functionality that others must provide 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 8 

in call-return styles 
connectors piggyback control & data 

consumers know the identity 
of providers upon which they rely 

control 
building block: call 

consumer blocks until a request is serviced 

complex protocols may be built 
example: client initializes server, starts a session, 
makes repeated requests, closes the session 

data flows in 2 ways 
parameters: from consumer to provider 

return values: from provider to consumer 



2/5/2012 

5 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 9 

in call-return styles 
functional correctness is hierarchical 

the correctness of each component may depend on the 
correctness of the functionality it invokes 

leads to a pre/post-condition style of specification 
pre = conditions under which a service may be requested 

post = the result of having made a service request 

binding time of a provider may vary 
static = at compile time 

example: traditional compilers & ADTs 

dynamic = at run time 
example: OO method dispatch for class hierarchies 

brokered (also at run time) 
use broker to find components/service providers 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 10 

example 
dynamic binding 

object 2D-Shape 

 

 

 

 

2D-Shape defines method Perimeter(): Real 
same operation, but implemented differently 
for Triangle, Square, and Circle 

if an object A is of any subtype of 2D-Shape  
a consumer may call A.Perimeter(), 
and the appropriate method will be chosen at run-time 

Polygon Circle 

2D-Shape 

Triangle Square 



2/5/2012 

6 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 11 

outline 

call-return styles 

single process flavors 

main-subroutine, layers, modules, objects 

distributed flavors 
components, tiers, cloud 

implementing distributed call-return 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 12 

main-subroutine flavor 
fairly unrestricted topology 

frequently single thread of control 
one component in the C&C view 

subroutine 

method call 

Main   

Sub 1 Sub 2 Sub 3 

controller 



2/5/2012 

7 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 13 

main-subroutine flavor 
subroutines indicate code structure 

“hierarchical” decomposition 
based on definition-use relationship 

hierarchical reasoning 
correctness of a subroutine depends on 
the correctness of the subroutines it calls 

subsystem structure implicit in the hierarchy 

in large systems, 
“hierarchy” may become spaghetti 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 14 

layers 
enforce hierarchy 

Core 
 Level 

Basic Utility 

Useful Systems 

Users 

each layer 

provides a set of services 
to the layers above 

encapsulates a set of 
implementations  
and lower-level services 

relies on services 
from the layers below 



2/5/2012 

8 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 15 

example of layers 
network protocol stack 

Presentation 

Application 

Session 

Transport 

Network 

Physical 

Data Link Control 

more about this later in the course 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 16 

modules 
alternative way to rein in complexity 

subroutine 

method call 

  module 

Main   

Sub 1 Sub 2 Sub 3 

controller 



2/5/2012 

9 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 17 

modules are: 
(naïve) a piece of code 

compilation unit, including interface declarations 

(Parnas) a place to encapsulate decisions 

modules are good for: 
management: partition overall development effort 

divide and conquer 

understanding 
divide and conquer 

evolution: separation of concerns 
changes to one module are isolated from others 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 18 

in the 70’s, modules turned into 
Abstract Data Types (ADTs) 

good programmers shared an intuition 
if you get the manipulation of data structures right, 
the rest of the program is much simpler. 

ADTs’ contributions:  
structure   representation bundled with operators 

rules for combining types   declarations 

language support   modules, scope, user-defined types 

specifications   abstract models, algebraic axioms 

integrity constraints   invariants of data structures 

information hiding  protect internal structure 

this is routine practice now part of O-O 



2/5/2012 

10 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 19 

in the 80’s, ADTs turned into 
objects 

inheritance 
share definitions of functionality 

polymorphism/dynamic binding: 
determine actual operation to call at run-time 

capture families of related designs 
inheritance hierarchy 

natural mapping to real world or domain 
if we understand the domain then we are led to a natural 
system structure based on the domain  

improve understandability, maintainability 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 20 

objects have limitations: 
scalability on the number of object classes 

vast numbers of classes requires additional structuring 

hierarchical design suggested by Booch and Parnas 

scalability on the number of interactions 
single interface can be limiting & unwieldy 

push to permit multiple interfaces led to components 

overall system behavior hard to understand 
distributed responsibility for behavior 

interaction diagrams now used in design 

hard to capture similarities at the system level 
object classes are fine grain 

push led to design patterns & product lines 

objects were not the end of the story 

scalability  

scalability  



2/5/2012 

11 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 21 

outline 

call-return styles 

single process flavors 
main-subroutine, layers, modules, objects 

distribution 
components, tiers, cloud 
implementing distributed call-return 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 22 

more complex, distributed applications 
led to enhanced call-return flavors 

client-server 
objects are processes 

asymmetric: client knows about servers, but not vice versa 

tiered 
elaboration on client-server 

aggregation into run-time layers (tiers) 

usually small number of tiers 

components (ex.?) 

multiple interfaces 

special infrastructure supports finding and communicating 

compound documents (ex. ?) 

document contains a set of embedded objects 



2/5/2012 

12 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 23 

early information systems 
predecessors of client-server 

main features 
no processing on terminals 

centralized, secure, monolithic system (server) 

single vendor for HW and SW 

forces for change 
cheap PCs, bottlenecks in central unit 

mainframe 
or server 

central database + 
applications 

session1 sessionn session2 ... terminals 
or dumb PC 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 24 

early client-server systems 
have two tiers 

main features 
some processing moved out to workstations 
applications/data are distributed on secure, specialized servers 

forces for change 
increased numbers of clients 
application complexity 
server bottlenecks 

mainframes 
or servers 

database  
server1 

application1 ... workstations 

database  
server2 

database  
servern 

... 

application2 
applicationm 



2/5/2012 

13 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 25 

many modern systems 
have several tiers 

main features 
increased server specialization 
client tasks invoke many different remote applications  

mainframes or 
high-end servers 

database  
server1 

database  
server2 

database  
servern 

... 

task1 ... workstations 
task2 

taskm 

application 
server1 

application 
serverk 

... workstations 
or servers 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 26 

the cloud 
rely on servers for storage and processing 

drivers: mobility, reliability, scalability… 
challenges: privacy and security trusted to 3rd parties 

logic and storage 
in the cloud 

task1 ... 
UI rendering 

in clients task2 
taskm 

database  
server1 

database  
server2 

database  
servern ... 

application 
server1 

application 
serverk 

... 

dynamic binding 
of servers 



2/5/2012 

14 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 27 

take 5 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 28 

outline 

call-return styles 

single process flavors 
main-subroutine, layers, modules, objects 

distribution 
components, tiers, cloud 

implementing distributed call-return 



2/5/2012 

15 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 29 

in early main-subroutine 
consumer and provider in the same address space 

compiler resolves address of provider 

parameter values and return results 
passed on the call stack 

consumer and provider may access shared variables, 
e.g. by passing parameters by reference 

C P 
call 

return 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 30 

device 

same implementation mechanisms 
do not apply across process/machine boundaries 

compiler cannot resolve address 
of provider on a different address space/machine 

how to pass parameters & results 
to a different process/machine? 

P 

device 

C 

? 



2/5/2012 

16 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 31 

call-return conceptual model 
supported by middleware 

device device 

network 

middleware middleware 

c1 c2 

distributed app 

conceptual 
model 

under 
the hood 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 32 

lifting the hood on RPC 

putting the R in Procedure Calling 

how to pass parameters? 

how about shared memory? 

handling limitations in practice 

device 

C S 
call 

return 



2/5/2012 

17 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 33 

device device 

m
id

d
le

w
are

 
device 

idea: stubs hide communication 

client stub, aka server proxy, 
appears to C like a server 
running on the client device 

server stub, aka client skeleton, 
appears to S like a client 
running on the server device 

C S 
call 

return 

C S 
call 

return 

Cs Ss 

call 

return 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 34 

RPC is implemented 
by sending messages 

device device 

C S 
call 

Cs Ss 

call 



2/5/2012 

18 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 35 

marshalling parameters 
is type-specific and 
platform-specific 

device device 

C S 
call 

Cs Ss 

call 

char *myString; 

… 

someProc(257,”Fred”,myString); 

void someProc(int d, 

              char *n, 

              char *m){… 

OS send buffer OS receive buffer 
wire 

id invert 
big/little 

endian 

copy 
? 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 36 

simulate shared address space 

to some extent 

references to simple, small structures 
resolved by copy/restore 

complex data structures not supported 
(structure contains pointers, e.g., linked lists) 

RPC 

address space 
(memory) 

C S 

device 

C 
call 

return 

Cs 
copy contents 

restore contents 



2/5/2012 

19 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 37 

solution: increase granularity 
from bytes to objects 

both local objects and references to remote 
objects are passed by value (serialization) 

the result of the called method is also serialized 
and passed back to the caller 

C S 

object refs 
(middleware) 

RMI 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 38 

RMI uses similar ideas to RPC 

communication facilitated by local stubs (proxy/skeleton) 

stubs define/support an interface for method calling 

calling and return implemented by message passing 

separate mechanisms for dynamic binding (object registry) 



2/5/2012 

20 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 39 

RMI is different from RPC 
in a number of ways 

doesn’t try to hide distribution in the language: 
remote objects are declared “remote” 

marshalling is simplified 
by passing by value only 
(object references can be used in nested RMIs) 

(in Java) by having JVMs hide platform dependencies in 
data representation 

serialization could be much heavier by having to 
pass the code for the objects with every call, but 
that can be avoided by passing URLs for 
downloading the code, rather than the code itself 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 40 

RMI example 
calculate PI 

suppose you have a computationally intensive task 
that you want to  

define it in the client 

invoke it in the client 

execute it on a powerful server… 

look at the example code at 
http://download.oracle.com/javase/tutorial/rmi/overview.html 

 

if you’re not familiar with generic types in Java, 
you may refer to 
http://download.oracle.com/javase/tutorial/java/generics/index.html 

http://download.oracle.com/javase/tutorial/rmi/overview.html
http://download.oracle.com/javase/tutorial/java/generics/index.html


2/5/2012 

21 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 41 

RMI example: code view 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 42 

RMI example: run-time view 



2/5/2012 

22 

SWE 443 – Software Architecture © Sousa 2012 Lecture 3 – Call-Return Systems – 43 

in summary 
select a call-return style when: 

task is dominated by 
single thread of control 

caller knows and cares 
about the identity of server 

low volume of data is transferred  

in distributed systems: 

it is fine to block the caller waiting for a reply 

the server is ready to process each request 

components and network are mostly reliable 

RPC/RMI 

C S 
call 

return 


