
A Middleware Supporting Adaptive and Location-aware
Mobile Collaboration

Marcelo Malcher, Juliana Aquino, Hubert Fonseca, Lincoln David, Allan Valeriano, Markus Endler

Laboratory for Advanced Collaboration (LAC)

Pontifícia Universidade Católica of Rio de Janeiro, Brazil
{marcelom, jaquino, hfonseca, lnsilva, avaleriano, endler}@inf.puc-rio.br

ABSTRACT
Mobile Applications with location awareness allow mobile
users to communicate and share different sorts of location-
based information among themselves, such as the current
position of other users or geo-referenced data. Although
many of such mobile collaboration applications potentially
share a good amount of functionality, most of them are
developed from scratch, are monolithic and are tailored to
specific mobile platforms,, which limit their applicability.
This paper presents a client middleware architecture which
supports dynamic deployment and composition of
components for context- and location awareness, and
common collaboration services. We also present some
prototype map-based and location-aware applications
which we have implemented on the top of our middleware
services.

Keywords
Mobile Computing, Context-awareness, Location-based Services,
Middleware, Dynamic Adaptation, Collaboration, Android.

1. INTRODUCTION
Mobile and location-aware collaboration allows
geographically distributed and mobile users to
communicate and share different sorts of location-based
information among themselves, such as geo-referenced
annotations or other user's current positions. Although
many of such applications potentially share a good amount
of functionality related to context-/location-awareness,
communication and sharing mechanisms, most of them are
developed from scratch, are monolithic and include
platform dependent-code , which limits their applicability.
The use of middleware platforms is a means for
applications to become less dependent of the specificities of
mobile platforms and device resources/sensors, and become
less complex due to the adoption of high-level software
structuring and management mechanisms, as well as reuse
of common modules. Hence, major considerations driving
the development of middleware platforms for mobile
collaboration are built-in support for flexible deployment
and composition of services, context-awareness, flexible
and asynchronous service interaction model, distribution
transparency for data sharing and event distribution, and
provisioning of map-based and location-aware services.

During the last two years1 we have been working on a
client middleware architecture that supports the
development of mobile and location-aware collaborative
applications which features: (i) capability of dynamic
deployment of new components and switching between
executing components, both at the middleware and the
application-layer (ii) extensible context-awareness, (iii)
uniform interface for sharing of data and asynchronous
communication (among local and remote components), and
(iv) support for the combination of basic collaboration
services. As a concrete result of this project we designed
and implemented basic middleware services that give
support for the above mentioned capabilities and a few
prototypes of mobile collaboration application clients for
the Android platform [1].

This paper is organized as follows. Section 2 summarizes
related work on middleware for mobile collaboration.
Section 3 shows the proposed client architecture and
summarizes its main elements. Then, Section 4 describes in
more detail the main middleware elements that we have
implemented. In Section 5 we summarize some of the
location-based collaboration prototypes that we developed
so far, and in section 6 we present our concluding remarks.

2. RELATED WORK
Some work have also built middleware for mobile
computing with location-awareness, but none of them
simultaneously features the capability of dynamic
deployment and replacement of components, context-
awareness, uniform local and remote asynchronous
interactions, and support for composition of common
collaboration services. Nevertheless, following two systems
share some similarities with our work.

The ContextPhone [2] supports the development of
context-aware applications for smart phones. It is
composed of interconnected modules which provide a set
of open-source libraries and components to be executed on
mobile phones. The main modules are the sensor module,
which acquires raw context data from different sources,

1 Work done in the scope of the Mobilis project, a cooperation

with TU Dresden, Germany, and the Federal University of
Minas Gerais, Brazil; BMBF/CNPq Grant nr. 490817/2006-8

like positioning information from a GPS sensor, and the
communication module, which implements connectivity
and communication with remote services through different
protocols, such as GPRS, Bluetooth, SMS and MMS.
However, this platform only provides very simple forms of
context-awareness and lacks support for dynamic
adaptation of the middleware and applications.

Preuveneers and Barbers [3] describe a resource-aware and
context-driven middleware for mobile devices, which is
component based and self-adaptive. It follows a layered
approach where a run-time layer is responsible for module,
component and connectivity management and adaptation
control, whereas the context layer is responsible for context
retrieval, storage and manipulation of context data. Using
their middleware they have implemented a conferencing
client comprised of a multimedia, a Jabber and a Web
server components and evaluated the energy consumption
with and without dynamic adaptation. Despite sharing
similar goals and architectural elements as ours, this work
is less focused on collaboration components and also lacks
a unified interface for local/remote asynchronous
communication.

3. PROPOSED CLIENT ARCHITECTURE

Our client architecture is composed of an application layer
and a middleware layer, as shown in Figure 1. In our
approach, a mobile client application (for location/context-
aware collaboration) is built out of generic, sharable and
dynamically composable components (represented as
Comp_X in Figure1), each of which implementing an
elementary communication or data sharing functionality
(e.g. instant messaging, a map annotation service, etc.). The
composition, execution, dynamic adaptation and interaction
of these components is supported by the following five
basic middleware services.
Component Manager: is responsible for discovery,
dynamic deployment and binding of components used by
applications. It also supports queries about all components
currently deployed at the device, and their current states
(e.g. loaded, deployed, active/inactive).

Adaptation Manager: is responsible for triggering
dynamic adaptations regarding components of the
applications, whenever required. For this purpose, it listens
to notifications of context changes, monitors the current
configuration of components and requests basic operations
on components through the Component Manager.

Context Manager: supports the discovery, deployment
and execution of any number of Context Providers, each of
which collects, processes or distributes context data (e.g.
resource states or events, and location or sensor data) from
the device’s mobile platform.

Shared Data Manager: provides a uniform API for
asynchronous communication among any component based
on a Publish-Subscribe mechanism. A single parameter at

the publication operation determines if matchmaking with
subscriptions and notifications will happen only to local
subscribers, or also remote ones. For the latter, SDM relies
on MD-ECI.

MD-ECI: is a SIP-based Publish-Subscribe system [4] that
supports remote distribution of notifications of publications
– which may be data objects or events - among mobile
devices. The main difference between an event and a data
object is that the latter is kept in persistent storage at the
MD-ECI broker for access by late-joiners, i.e. subscriptions
made after the object’s publication.

 Figure 1: Client Architecture and MD-ECI

We chose Android as the primary mobile platform target
for our middleware, because it supports Java programming
(execution is on the Dalvik VM), defines a Service
Oriented Architecture and provides many powerful APIs
and libraries for location-awareness, GUI development and
access to Google Maps. The Android programming model
[1] defines four essential types of elements that make up a
mobile application: services, activities, broadcast receivers
and content providers. Although most of our current
middleware implementation depends on Android features,
all its constituent services can, in principle, be ported to any
other service oriented platform, such as OSGi..

4. IMPLEMENTED MIDDLEWARE
SERVICES

In this section we will discuss in more detail the basic
services of our middleware. In addition, we also developed
some application-level, generic components for mobile
communication and location-aware collaboration: a
component for (parameterized) proximity detection of
mobile devices; a component for sharing geo-referenced
data objects, and a component for connectivity-aware
instant communication which is capable of buffering
outbound messages when it detects a disconnection, and

automatically switching from the SDM to SMS
communication mode.

4.1 Kaluana
Kaluana [5] is the tier of our middleware that implements
the Component and Adaptation Managers. It defines a
component model on the top of Android’s service-
orientation framework. In this model, each component
defines a set of provided services, a set of used services,
and the names of other components it depends on. Also,
any Android service or activity is component-based, i.e. has
a descriptor which defines the set of services it requires for
execution. When an activity or service is started, the
Component Manager uses the Android Framework to
search for the required services. If it finds a locally loaded
component that implements this service, it simply activates
the component. Otherwise, it may download and deploy a
suitable component from a remote component repository.

The Adaptation Manager is responsible for
determining if a component should be added to, activated,
deactivated of replaced from the device, and for selecting
the candidate components for such adaptation. This
selection is based on the current system context (or user
location) and according to an execution pre-requisite
associated with each component. For example, when the
device switches from a GRPS to a WiFi connection (of a
specific and trusted SSID), a component for WiFi RSSI-
based (indoor) and site-specific location service may be
deployed and activated at the device. In order to actually
perform such a dynamic adaptation, the Adaptation
Manager issues basic activation and binding requests to the
Component Manager, which does the activations and re-
bindings and then updates its registry.

4.2 Shared Data Manager
The Shared Data Manager, or SDM, is an Android service
which implements a publish-subscribe mechanism which is
used by application and middleware services alike to
exchange data and events locally, i.e. for asynchronous
interaction with components deployed on the same device,
or remotely, with components and applications executing
on remote devices.

SDM can be used for sharing almost any type of
data. For publishing a data or event, an application
middleware service only needs to inform the data/event's
subject. Optionally, it may inform other properties
(attributes), which are used in subscription expressions for
filtering. In case of a data publication, it should add a
serialized object representing the data itself, e.g. a geo-
referenced text, video-clip or audio recording. To receive
updates on a specific subject, an application or middleware
component must subscribe with the SDM, registering a
listener and optionally informing also an expression
referring to the data/event properties. Whenever a new
publication on this subject happens, the SDM will notify all
subscribers of this subject whose expressions match the

properties of the published object/event. In order to deliver
data/events to subscribers on other devices, SDM
implements also a MD-ECI client.

4.3 Context Management Service
The Context Management Service, or CMS, is an Android
service that manages the gathering, processing and
distribution of any type of context data. Within CMS, each
type of context data/event is de facto obtained or produced
by a specific Context Provider. Each of such Context
Provider (CP) is a component that the CMS can deploy and
activate/deactivate independently, depending on whether
there is some application component interested in the
corresponding context type. CMS also supports the
discovery and dynamic download of new Context Providers
from a remote Repository of CPs.

CMS uses SDM to deliver the requested context data object
to the subscribers, regardless if they are local or remote.
Context subscribers may be application specific
components or other Context Providers, such as those
responsible for transforming or aggregating lower-level
context data and producing high-level context information.
CMS also provides class ContextConsumer, aimed at
hiding from the application the code necessary to interact
with SDM and CMS, and thus offering a much simpler
interface, referring only to the specific context information
needed.

Figure 2: CMS interactions upon new context subscription.

Figure 2 illustrates the basic interactions between
an application, the CMS and SDM: A ContextConsumer of
an application issues a subscription at SDM for some
specific type of context information, e.g. Battery level, and
notifies CMS (steps 1+2); Alternatively, the
ContextConsumer may also make a synchronous request to
obtain the current state of a specific context type (step 2).
In either case, CMS searches for any locally deployed
Context Provider that can produce the requested context
information. If none can be found locally, CMS searches,
downloads the corresponding CP from the remote
repository and activates it (step 3). Once activated, the CP
polls or invokes methods at the Android API of the

corresponding Resource Manager, and delivers the polled
data to CMS as a ContextInformationObject (step 4). CMS
adds some data to this object (e.g. the deviceID and
timestamp), and publishes it through SDM (step 5). This
object is then delivered to all ContextConsumers with
matching subscriptions (step 6), which in turn pass it to the
applications for specific handling (step 7). Currently, we
are setting up a library of Context Providers for CMS that
includes following types of context: Geographic location
(GPS), Time, Battery level, Type of wireless connection,
WiFi RF signal strength, Accelerometer, etc.

5. LOCATION-BASED COLLABORATION
APPLICATIONS

Using our middleware and application-level components,
we implemented some prototype applications for location-
based mobile collaboration, some of which are as follows:

Geo-tagging is an application similar to Google’s Latitude
[6] which allows mobile users to visualize (on the digital
map) its own and other user’s position in real time while
they move, and to create - and also instantly share with
other users - geo-referenced Points of Interest (POIs), or
tags, e.g. for city landmarks or attractions. Geo-tagging
uses a component for sharing geo-referenced objects and
events, which in turn uses SDM and MD-ECI to remotely
distribute user and tag attributes associated with GPS
coordinates retrieved by the Context Provider
GPSLocationCP within CMS. But, whenever the user’s
device is unable to retrieve its current GPS position, this
will be detected by the PositioningAvailabilityCP in
CMS, and will cause the Adaptation Manager to de-activate
the application component of Geo-tagging responsible for
the creation of new tags .

TrackService is used for creating Off-road/Trekking
routes/tracks, grading track sections, and sharing this
information (i.e. the track log) with other mobile users. The
mobile user is able to log his/her route as a sequence of
GPS coordinates of his/her mobile device. Figure 3 shows
three possible screens of TrackService. While the user is
walking/driving along a route, he/she is able to evaluate the
route according to the difficulty or danger level, giving a
grade from 1 to 10 for each route section (cf. Figure's
leftmost screen). As he/she gives grades to the sections of
the track, a different color is used to represent each
difficulty/danger level, ranging from green (e.g. easy) to
yellow, and then to purple (e.g. very difficult). The user can
also choose if, he/she wants to share his track with others
(cf. rightmost screen), and the options are: in real-time,
after saving it on the device, or no sharing..

Other prototypes developed include: GeoCast, an
application where messages can be sent to any registered
mobile user whenever he/she enters or leaves an arbitrary
geographic region (marked as a polygon on the map), or

gets closer, or farther away, from a specific point marked
on the map;

Bus4Blinds is an application that notifies a person with
serious visual impairment waiting at a bus stop when a bus
of a selected line is approaching the bus stop where the user
is waiting. The notification is symmetric, meaning the bus
driver is also notified of the presence of the bind person at
the stop.

Figure 3: Screenshots of TrackService

6. CONCLUSIONS

So far, our effort was mainly focused on the development
of basic middleware mechanisms and services, such as
Kaluana, SDM and CMS. However, there are still many
things to be improved, specially with regard to decision
making, selection of components and safe execution of
dynamic adaptations by the Adaptation/Component
Managers of Kaluana. We are also aware of the scalability
problems of our remote context distribution approach and
aim at developing a context sharing architecture based on
federated MD-ECI brokers. In parallel, we plan also
develop other generic, shareable components to be used by
such mobile collaboration applications.

7. REFERENCES

[1] Google Android (2009) from http://www.android.com/
[2] Raento, M., Oulasvirta, A., Petit, R., & Toivonen, H. (2005).
ContextPhone: A prototyping platform for context-aware mobile
applications. IEEE Pervasive Computing, 4(2), 51-59.
[3] Preuveneers, D., & Berbers, Y. (2007). Towards context-
aware and resource-driven self-adaptation for mobile handheld
applications. Proceedings of the 2007 ACM symposium on
Applied computing.
[4] MD-ECI (2009) from http://www.lac.inf.puc-
rio.br/moca/mdeci/mdeci.htm
[5] Fonseca, H. (2009) A Component-based middleware for
Dynamic Adaptation on the Android Platform, M.Sc. Thesis,
Depratment of Informatics, PUC-Rio, Brazil.
[6] Google (2009). Latitude Apps , from
http://www.google.com/latitude/app

