
C O V E R F E A T U R E

0018-9162/07/$25.00 © 2007 IEEE38 Computer P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

cryptographic services that can perform on a speck
of dust.

Current wireless sensor nodes use simple, battery-
powered 4-bit or 8-bit general-purpose processors and
provide secure communication using software-imple-
mented cryptographic protocols, such as Security
Protocols for Sensor Networks (Spins).3 We envision
that next-generation sensor nodes will operate with-
out batteries, harvesting energy instead from ambient
sources in the environment. The notion of self-pow-
ered computing devices opens the door to a wealth of
new applications, not just for wireless sensor nodes

As tiny wireless sensors and RFID tags become ubiquitous, they impact privacy, trust,

and control. Protecting data on these devices requires new algorithms suitable for

ultralow-power implementations.

Jens-Peter Kaps, George Mason University

Gunnar Gaubatz and Berk Sunar, Worcester Polytechnic Institute

W ireless sensor networks (WSNs)1 and
radio frequency identification (RFID)
devices—with applications ranging from
supply-chain management to home
automation and healthcare—are quickly

becoming a vital part of our infrastructure. Security is
a critical factor in these ultralow-power applications.2

However, these tiny, pervasive computing devices have
extremely limited power resources and computational
capabilities. Thus, security engineers face the seemingly
contradictory challenge of providing lightweight algo-
rithms for strong authentication, encryption, and other

Cryptography on
a Speck of Dust

Ultralow-Power Application Domain
Energy scavengers harvest energy from environmen-

tal sources such as light, heat, and vibration and con-
vert it into electric power. On-chip microelectro-
mechanical system (MEMS)-based power scavengers
can currently produce up to 8 µW of power.1 Future
MEMS-based scavengers could conceivably deliver up
to 50 µW continuously.

Most RFID tags contain a transponder and a read-
only memory chip that has a unique electronic
product code, or global unique identifier. More
sophisticated tags have writeable memory and some
even have sensors. Active tags carry a small battery;
passive tags receive their power from the reader. The
reader emits an electric field to power the tags while
querying them. The amount of power a tag receives

depends on the field’s intensity, as governed by
national and international regulations. Only about 20
µW are available for the digital part of an RFID tag.

The power available to sensor nodes and RFID tags
is orders of magnitude less than what battery-
powered devices consume. Therefore, designing
cryptographic systems for these power-constrained
devices is especially difficult. Scavengers and RFID
reader fields don’t produce enough energy to sup-
port even the simplest general-purpose low-power
CPUs currently being used in sensor networks.

Reference
1. S. Meininger et al., “Vibration-to-Electric Energy Conver-

sion,” IEEE Trans. VLSI Systems, Feb. 2001, pp. 64-76

R2kaps.QXP 23/1/07 12:12 PM Page 38

February 2007 39

but for the entire ubiquitous computing field.
As the “Ultralow-Power Application Domain” side-

bar describes, to provide cryptographic functions for
this class of devices, designers must make power con-
sumption their first priority. Thus far, research has con-
centrated on WSNs’ network-specific aspects and on
software implementations of cryptographic algorithms.
Only recently have researchers published studies of spe-
cial hardware implementations.4-8

A wireless sensor node’s main power consumer is its
RF transceiver, or radio. Hardware developed specifi-
cally for radios combines a low data rate, low power
consumption, and the ability to interface directly with
low-power microcontrollers. Providing adequate secu-
rity for ultralow-power applications such as WSNs and
RFID devices requires an approach similar to that used
for radios—that is, specialized hardware combined with
application-specific algorithms.

Other factors also play a role. For example, despite
advances in radio design, transmission power is still
costly compared to computations. Hence, we must keep
the transmission overhead that applying security incurs
to an absolute minimum.

Furthermore, most current cryptographic algorithms
are designed for high performance, mostly in software
on 32-bit microprocessors. On sensor nodes and RFID
devices, computation time isn’t as critical as power
and space conservation. To this end, we introduce
useful techniques for cryptographic algorithm im-
plementers as well as guidelines for designing
cryptographic algorithms for ultralow-power appli-
cations.

SURVEY OF CRYPTOGRAPHIC ALGORITHMS
As a first step, we examine current popular crypto-

graphic algorithms as well as some we have found par-
ticularly interesting for use in this domain.8

Block ciphers
A wide variety of established block cipher designs

share similar functions and structures. Our list of algo-
rithms consists of classic block ciphers (Data Encryption
Standard/Triple DES, International Data Encryption
Algorithm [IDEA], and RC5), the Advanced Encryption
Standard (AES) finalists, and the Extended Tiny
Encryption Algorithm (XTEA). Table 1 summarizes
their features.

Round structures.Virtually all modern block ciphers
are iterated product ciphers—that is, the encryption
process consists of repeated applications of a round
function. The round function consists of multiple lay-
ers of transformations (also called confusion and diffu-
sion layers) that perform substitution and permutation.
The round function itself isn’t considered secure, but
each additional round increases the security level.

Popular round structures—used by DES, RC5, MARS,
and so on—are variations of the Feistel network, in which
the round function typically modifies only part of the
round data. Some publications therefore refer to rounds
in Feistel ciphers as half-rounds. Substitution and per-
mutation networks used by IDEA, Rijndael (AES), and
so on typically modify the entire data set in each round.

Substitution functions. All product ciphers use some
form of substitution function, or S-box, to introduce
nonlinearity into the encryption process. Techniques
range from lookup-table-based pseudorandom substi-
tutions to high-degree nonlinear arithmetic functions.

Permutation. Product ciphers combine various trans-
formations for confusion and diffusion. They achieve
diffusion through fixed permutations (for example, ini-
tial permutation [IP], inverse IP [IP-1], and permutation
[P] in DES) or data-dependent (variable) shifts and rota-
tions (used by RC5/6 and MARS, for example).

Key mixing. Most block ciphers add subkeys to the
round data using XOR operations, which are fast and

Table 1. Common elements in block ciphers.

Substitution-
Block permutation Pseudo- Fixed Fixed Variable Multiplication

No. of size (SP) Arithmetic random permu- Addition shift/ shift/ Modular with a
Algorithm rounds (bits) Feistel network S-box S-box tations (mod 2w) rotation rotation multiplication constant

DES/ 6/48 64 Yes Yes Yes Yes
Triple DES

IDEA 8 64 Yes Yes Yes

RC5 12/16 32/128 Yes Yes Yes

AES 10/12/14 128 Yes Yes Yes Yes Yes
(Rijndael)

RC6 20 128 Yes Yes Yes Yes

MARS 2 � 16 128 Yes Yes Yes Yes Yes Yes

Serpent 32 128 Yes Yes Yes Yes

Twofish 16 128 Yes Yes Yes Yes Yes Yes

XTEA More 32 Yes Yes Yes
than 31

R2kaps.QXP 23/1/07 12:12 PM Page 39

40 Computer

introduce virtually no overhead in either software or
hardware implementations. Several algorithms use a
blend of XORs and regular integer addition. However,
the resulting addition is no longer commutative, thereby
complicating cryptanalysis.

Arithmetic operations. Certain arithmetic operations
are useful for combining diffusion and nonlinear mixing
of round data with key bits. A good example is trun-
cated integer multiplication, which MARS uses.

Stream ciphers
The predominant method for building stream ciphers

uses a pseudorandom number generator (PRNG) to gen-
erate a key stream and XOR its output with the data
stream. The other method uses a dedicated stream cipher
such as the proprietary RC4, which uses integer addi-
tion modulo 256 and a dynamic S-box with 256 8-bit
entries. The S-box is a lookup table in which the entries
change with each encrypted byte depending on the key.

Developers can build PRNGs from block ciphers, hash
functions, modular exponentiators, or linear feedback
shift registers (LFSRs) based on stop-and-go generators.
Using block ciphers, hash functions, or modular expo-
nentiators has a big advantage over using a dedicated
stream cipher because these algorithms can maintain
their original function and adding the stream cipher
functionality comes at a minimal extra cost.

Hash functions
A hash function produces a short fixed-size digest of

a long message that’s useful for checking the message’s
integrity. Message authentication codes are hash func-
tions that use a secret key and hence provide both mes-
sage authentication and integrity. Universal hash
function families provide provable security, and can be
used to build provable secure MACs.9 In other words,
we can prove bounds on an attacker’s success probabil-
ity independent of the applied computational power.

In addition to the most popular hash functions, we focus
on two universal hash function families: NH10 and WH.7

Table 2 summarizes some hash function parameters.
Each hash function has a fixed input size. The algo-

rithm splits longer input strings and pads shorter ones.

The hash size specifies the resulting hash value’s length
independent of the input string’s length. The hash func-
tions MD4, MD5, and those described in the secure
hash standard (SHS), such as SHA-1 and SHA-256, all
belong to the same group of hash algorithms. MD2,
MD4, MD5, and SHA-1 share similar functional blocks
with minor differences in the parameters. SHA-1 is
widely used despite recent advances in attacking it; how-
ever, MD4 and MD5 are considered compromised.

Introduced as a new hash function family for the MAC
using universal hashing (UMAC), NH is based on mod-
ular integer multiplication and summation. WH, a hash
function family with even stronger security properties
than NH, can be used in place of NH. WH is specifically
designed for implementation in ultralow-power hardware
and is based on modular polynomial multiplication and
summation. NH and WH are defined for any fixed block
size. For Table 2, we assume a block size of 64 bits
because this was the size we used in our implementation.7

Public-key cryptosystems
Classic public-key algorithm security (such as that

used by RSA and ElGamal) typically relies on the hard
problem of integer factorization or on finding the dis-
crete logarithm (DL) in a finite field. The dominating
arithmetic operation is modular exponentiation, which
is typically implemented using modular multiplication
and squaring operations.

Rabin’s scheme, a variant of RSA, fixes the public-key
exponent to 2. This significantly reduces the encryption
operation’s complexity to modular squaring and allows
for a compact implementation, whereas the general RSA
case would be too large. Because security in both Rabin’s
scheme and RSA relies on integer factorization, we
assume that there is no compromise in terms of security.

Elliptic curve cryptography (ECC) uses a variant of
the DL problem defined over the additive group of
points on an elliptic curve. The algorithm repeatedly
adds (or doubles) points until it obtains a scalar multi-
ple of the originating point. A single point addition con-
sists of a heterogeneous variety of finite field operations
such as addition/subtraction, multiplication, and, in
some cases, inversion.

Table 2. Summary of hash function characteristics.

Integer Integer Simple Fixed
Hash No. of Input size Hash size Constants Variables multiplication addition Polynomial logic shift/
function rounds (bits) (bits) (bytes) (bytes) (bits) (bits) multiplication functions rotation

MD2 16 128 128 256 48 32 Yes Yes

SHA-1 4 512 160 16 20 32 Yes Yes

MD4 3 512 128 16 16 32 Yes Yes

MD5 4 512 128 16 16 32 Yes Yes

NH N/A 64 64 64 64

WH N/A 64 64 Yes Yes

R2kaps.QXP 23/1/07 12:12 PM Page 40

Researchers have proposed hyperelliptic curve cryp-
tography (HECC) as a generalization of ECC. In HECC,
operands can be even shorter than in ECC while main-
taining an equivalent security level. HECC’s arithmetic
structure is even more complex than ECC’s, however.
Although efficient explicit expressions exist for the
group operations,11 they contain diverse arithmetic
primitives that might prove too complex for ultralow-
power implementations.

The Ntru encryption algorithm is based on the
shortest vector problem in high-dimension lattices.
NtruEncrypt’s central arithmetic primitive is multiplica-
tion in a truncated polynomial ring. We can subdivide
the operation itself into individual computations of poly-
nomial coefficients through accumulation of partial
products.

Table 3 compares the algorithm parameters for Rabin’s
scheme, Ntru, Elliptic Curve Menezes Vanstone (ECMV)
encryption, and Elliptic Curve Digital Signature Algorithm
(ECDSA).

ANALYSIS
The structure, functional primitives, and storage

requirements of cryptographic algorithms relate to their
energy consumption. From this we can devise recom-
mendations for future algorithms tailored for ultralow-
power implementations.

For our example implementations, we used the TSMC
0.13-µm application-specific integrated circuit (ASIC)
library, which is characterized for power, and the
Synopsys (www.synopsys.com) Design Compiler and
Power Compiler tools for synthesis. We used ModelSim
(www.model.com) to simulate and capture switching
activity, which Power Compiler uses to estimate power.
We observed that at a 500-kHz clock frequency, which
is common in sensor nodes, the static power consump-
tion PLeak, caused by leakage, outweighs the dynamic
power consumption PDyn, caused by switching activity.

Algorithm structure
An algorithm’s structure indicates how well it lends

itself to parallelization and serialization. The latter is
directly related to minimizing circuit area and therefore
static power consumption.

Scalability refers to the possibility of efficiently scaling
an algorithm between bit serial and highly parallelized
realizations. In certain contexts, such as public-key cryp-
tography, scalability can also encompass the reuse of
existing processing elements for higher-precision operands
than originally intended—for example, using 1,024-bit
modular exponentiator hardware for 2,048-bit operands.

The iterative round structure of most block ciphers
indicates a reasonable degree of scalability, provided
that all rounds are the same. Then, we need only imple-
ment one instance of the round function. Serialization is
possible with RC5 and RC6 and, ignoring a slightly
modified last round, most other ciphers.

Unlike block ciphers, public-key schemes are based pri-
marily on arithmetic over large integer or polynomial
fields. This usually lends itself well to serialization, even
though certain operations (modular reduction, for exam-
ple) introduce additional complexity, which hinders seri-
alization beyond a certain point. The biggest problem
with serial implementations is running time, which is
cubic in the operand size for most public-key algorithms.
It’s important to evaluate the tradeoff between area usage
and a certain degree of parallelization.

Modularity is closely related to scalability in the sense
that we can easily replicate simple processing elements
for further task parallelization to improve performance.
Our implementation of the NtruEncrypt algorithm pro-
vides an example.5

We can subdivide NtruEncrypt’s basic operation into
computations using 8-bit-long polynomial coefficients.
By intelligently arranging memory accesses to these coef-
ficients, we can compute multiple coefficients of the
result in parallel. Because operand storage is the largest
portion of the circuit, scaling up the number of parallel
arithmetic units (AUs) has little effect (less than a 50
percent increase) on the overall area and power con-
sumption. At the same time, this process can reduce the
number of clock cycles dramatically, as the first two
rows in Table 4 on the next page show.

Regularity describes the degree of similarity between
modules at different levels of parallelization:

• At the logic level, highly regular designs allow effi-
cient parameterization and reuse, while irregular cir-

February 2007 41

Table 3. Comparison of public-key cryptography functions.

Integer EC point Polynomial
Message Ciphertext Signature multiplication addition coefficients

Implementation Encryption Signature payload (bits) (bits) length (bits) (bits) (bits) (bits)

Rabin’s scheme Yes Yes Less than 512 512 512 512

NtruEncrypt Yes Less than 265 1,169 8

NtruSign Yes 1,169 8

Elliptic Curve MV Yes Less than 200 400 169

Elliptic Curve DSA Yes 200 169

R2kaps.QXP 23/1/07 12:12 PM Page 41

42 Computer

AES use permutations and expansions as
nonlinear diffusion elements. Fixed shifts
and rotations serve the same purpose and
are frequently used in both block ciphers
(such as AES, MARS, Serpent, and Twofish)
and hash functions (such as MD2, SHA-1,
MD4, and MD5). Common to all of these
functions is that their implementation intro-
duces virtually no cost because they require
only wiring resources and no logic. They are
perfect for any hardware implementation.

Data-dependent shifts. Because of their
resistance to differential cryptanalysis,
data-dependent shifts (or variable shifts)
are used in block ciphers such as RC5,
RC6, and MARS. Implementations fre-
quently use barrel shifters to support all

possible shifts or rotations.
The delay for one shift operation is proportional to

log2n, but its area scales with nlog2n. For situations in
which a register follows the shift or rotation, imple-
menting the register as a shift register with parallel load
and combining it with additional control logic and a
counter might be more power-efficient. Because of the
relatively high area cost, variable shifts are poorly suited
for ultralow-power implementations unless they’re com-
bined with existing registers.

Integer arithmetic. Integer arithmetic primitives, such
as addition and multiplication, are often the most costly
functions in a cryptographic algorithm. Although we can
often implement them in a bit-serial fashion (such as mul-
tiplication), the efficient propagation of carries presents a
major problem. The carry propagate, or ripple carry adder
(the simplest adder form), scales linearly with the word
size n, but glitches in the carry chain cause high dynamic
power consumption. Various alternatives exist, but they
carry a penalty in terms of area and therefore static power
consumption. Because of these costs, new ultralow-power
algorithms should avoid integer arithmetic.

Arithmetic primitives are frequently combined with
modular reduction steps. In trivial cases, a modulus of
2k means that the algorithm keeps only k bits of the
result, truncating excess bits. Finite field arithmetic with
a nontrivial modulus adds a fair amount of complexity
to the circuit. Simple implementations perform condi-
tional subtractions of the modulus from the result,
depending on its most significant bit’s value. For certain
classes of public-key algorithms that depend heavily on
modular arithmetic, using residue number system arith-
metic has proven effective for efficient implementation.

Polynomial arithmetic. Polynomial arithmetic—arith-
metic in extension fields—is preferable for ultralow-power
implementations because of limited carry propagation and
improved regularity. Therefore, several algorithms, includ-
ing AES, are specifically tailored for arithmetic in GF(2k).
We can implement additions in fields of characteristic two

cuits often require manual design changes.
• At the algorithmic level, a high degree of regularity

expresses the uniformity of operations necessary to
perform a task, while irregularity characterizes very
complex tasks consisting of many atomic operations.

Rabin’s scheme, NH, and WH are examples of algo-
rithms with high regularity. Each has one simple under-
lying function. Block ciphers require serialization of the
round function because even a single round can take a
considerable amount of chip area. Ciphers with a homo-
geneous round function, such as AES, have high regular-
ity and therefore seem better suited for serialization than
ciphers with a heterogeneous structure, such as DES.

Energy equals the amount of power dissipated over
time. Increasing the degree of parallelism increases
power consumption, but it also decreases computation
time. Because certain elements can have constant size,
the power-energy tradeoff depends on the architecture’s
overall structure. We can find the point of optimality by
modeling the energy consumption as a function of the
degree of parallelism. Energy per bit encrypted describes
the amount of energy needed to encrypt a single mes-
sage bit. We can use this metric, which is independent of
the actual operand length, to compare the energy effi-
ciency of cryptosystems at an equivalent security level.

Functional primitives
Each group of primitives has specific characteristics

and suitability for ultralow-power implementation.
Simple logic functions. In this group, the logic func-

tion output depends on a small, fixed set of inputs. This
includes functions such as XORs of two bit strings
(AddRoundKey in AES), bit multipliers, and multi-
plexers. The number of logic gates scales linearly with
the data path’s width.

Fixed shifts and permutations. In this article’s con-
text, fixed means that the shifts and permutations aren’t
data-dependent. Block ciphers such as DES, Serpent, and

Table 4. Comparison of implementations using a 0.13-µm application-

specific integrated circuit library and a 500-kHz clock frequency.

Power (µW) Delay Clock PDP

Implementation PDyn PLeak Total Area1 (ns) cycles2 (ns � µW)

NtruEncrypt 4.03 15.1 19.1 2,850 0.69 29,225 13.18
(1 arithmetic unit)

NtruEncrypt 5.00 22.5 27.5 3,950 0.69 3,682 18.96
(8 arithmetic units)

NH (integer) 5.47 28.1 33.6 5,291 9.92 64 333.31

PH (polynomial) 3.41 12.1 15.5 2,356 1.35 64 20.93

AES S-box (logic) 0.42 7.67 8.10 1,397 1.61 1 13.04

AES S-box (algebraic) 1.39 2.68 4.07 431 4.68 1 19.05

1 Area is given in terms of equivalent two-input NAND gates
2 Number of clock cycles to complete one operation

R2kaps.QXP 23/1/07 12:12 PM Page 42

by using XORs. The simplicity of the addition and reduc-
tion steps facilitates a bit-serial implementation of multi-
plication for ultralow-power applications.

Elsewhere we demonstrate the vast difference in
power consumption between integer and polynomial
arithmetic and describe the universal hash function fam-
ilies NH and PH.8 PH is a redefinition of NH that uses
polynomials over GF(2) instead of integers. We empha-
size that both hash functions are 2–w-almost universal,
hence both provide the same security
level. The differences in area, speed,
and power consumption, however,
are impressive. Table 4 summarizes
the results of our implementation at
500 kHz.

Substitution functions. Various
techniques can implement substitu-
tion functions (S-box). Although
implementing lookup tables is fast and easy, their size
often makes them prohibitively expensive. If perfor-
mance is secondary to low-power consumption and an
arithmetic description for the S-box exists, a circuit real-
ization of the underlying arithmetic operation might be
preferable.

The last two rows in Table 4 summarize the results of a
case study using different AES S-box architectures for
ultralow-power implementations. For one circuit, we
implemented the S-box as an arithmetic function using its
inherent algebraic structure. For the other circuit, we
implemented a 256 � 8-bit lookup table in combinational
logic. Even though the combinational implementation uses
only 30 percent of the arithmetic implementation’s
dynamic power, its size makes its total power consumption
two times higher. Thus, describing the S-box’s content
algebraically is advantageous and allows serialization.

Storage requirements
Cryptographic algorithms have manifold storage

requirements. The constants and variables that an algo-
rithm uses as well as implementation-specific storage ele-
ments add to these requirements. Constants consist of
fixed setup parameters, precomputed constants, and sta-
tic S-boxes. The first two—fixed parameters and precom-
puted constants—can be implemented in combinational
logic. However, devices must store variables, including
variable S-boxes (RC4), and temporary data in registers or
RAM. Pipelining techniques require additional storage
elements. Because storage elements typically impose sig-
nificant area and power penalties, ultralow-power imple-
mentations should use them conservatively.

Implementation considerations
Additional considerations go beyond a cryptographic

algorithm’s structure and elementary functions.
Multiencryption and multihashing increase an algo-

rithm’s security by applying it repeatedly. Triple DES is

probably the best-known example of multiencryption.
It applies DES three times in a row, using either two or
three different keys depending on the keying option.
Researchers originally developed Triple DES to prolong
DES’s lifetime until they established a new, more secure
standard. However, multiencryption and multihashing
can also enable ultralow-power cryptography. We can
use block ciphers or hash functions that consume little
power but have a small security margin, and run them

several times in series, thus obtain-
ing a more secure overall cipher or
hash function.

Fixed or constant parameters can
help alleviate cryptosystems’ storage
problem and can even simplify cer-
tain computations. This is highly
dependent on the intended applica-
tion context. For example, because

Internet servers typically must change keys and associ-
ated key parameters frequently, constant parameters are
impossible. In embedded applications, where communi-
cation is typically limited to links between sensor nodes
and a base station, fixing parameters such as the public
key helps to significantly reduce the storage requirements.

Precomputation is a powerful method for solving
latency problems. It’s especially important for low-power
nodes in which intensive computations must be spread
over time to reduce the power consumption below the
maximum tolerable level. If the algorithm allows pre-
computation of intermediate results, processing the input
data will require only a small number of computations
and latency might be virtually eliminated.

DESIGN RECOMMENDATIONS
FOR NEW ALGORITHMS

The most important requirement for a new crypto-
graphic algorithm is scalability. Implementers should be
able to scale the algorithm from a bit-serial implemen-
tation to a highly parallel implementation depending on
the desired maximum power consumption and speed.

An algorithm’s scalability depends on its regularity.
New cryptographic algorithms should be regular and
contain only a limited number of different primitives.
To further improve scalability, the basic functions should
be serializeable. The implementer can then trade speed
for power on a fine level of granularity, not just on the
algorithmic level.

Assuming clock speed is held constant, serializing an
algorithm slows its operation. However, in environments
in which data must be sent quickly but infrequently,
computing most steps offline ahead of time is desirable.
When the data becomes available, only a simple, fast
computation should be required to complete the oper-
ation—for example, adding data to the key.

WSN and RFID security requirements vary by appli-
cation, ranging from high-risk applications such as mil-

February 2007 43

Multiencryption and

multihashing increase an

algorithm’s security by

applying it repeatedly.

R2kaps.QXP 23/1/07 12:12 PM Page 43

44 Computer

itary target tracking, where attacks on devices are likely,
to low-risk applications such as passive environmental
monitoring. To support such a range of applications, the
new algorithms should operate with various key lengths.
Multihashing and multiencryption can also increase the
security level without increasing the footprint.

Considerations for implementing elementary func-
tions include:

• An algebraic representation can be more efficient
than a costly lookup table.

• Polynomial arithmetic in GF(2k) and fixed shifts and
rotations are well suited for hardware implementa-
tions.

• Integer arithmetic consumes a high degree of power.
• Data-dependent shifts and rotations are costly unless

they’re combined with existing registers.

WSN and RFID messages are usually small, ranging
from 30 to 100 bits in length. Transmitting a bit con-
sumes more power than computation. New algorithms
should therefore have a compact representation of
cipher I/O. Encryption functions shouldn’t cause mes-
sage expansion and should use a small block size. Hash
functions should result in small digests because they’re
transmitted in addition to the original data. Ideally, the
digest size won’t affect the collision probability.

T he challenge of future research is to find an algo-
rithm that has at its core a simple, scalable primitive
that could serve as a common element for secret and

public-key functions. Such an algorithm could provide
both types of functions for ultralow-power applications,
which in turn would enable simple and efficient security
protocols. ■

References
1. D. Culler, D. Estrin, and M. Srivastava, “Overview of Sensor

Networks,” Computer, Aug. 2004, pp. 41-49.
2. A. Perrig, J. Stankovic, and D. Wagner, “Security in Wireless

Sensor Networks,” Comm. ACM, June 2004, pp. 53-57.
3. A. Perrig et al., “SPINS: Security Protocols for Sensor Net-

works,” Wireless Networks, Sept. 2002, pp. 521-534.
4. M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong

Authentication for RFID Systems Using the AES Algorithm,”
Proc. Cryptographic Hardware and Embedded Systems
(CHES 04), LNCS 3156, Springer, 2004, pp. 357-370.

5. G. Gaubatz, J.-P. Kaps, and B. Sunar, “Public-Key Cryptog-
raphy in Sensor Networks—Revisited,” Proc. 1st European
Workshop Security in Ad-Hoc and Sensor Networks (ESAS
04), LNCS 3313, Springer, 2004, pp. 2-18.

6. G. Gaubatz et al., “State of the Art in Ultralow-Power Public-
Key Cryptography for Wireless Sensor Networks,” Proc. 3rd
IEEE Int’l Conf. Pervasive Computing and Comm. Work-

shops, IEEE CS Press, 2005, pp. 146-150.
7. J.-P. Kaps, K. Yüksel, and B. Sunar, “Energy Scalable Univer-

sal Hashing,” IEEE Trans. Computers, Dec. 2005, pp. 1484-
1495.

8. K. Yüksel, J.P. Kaps, and B. Sunar, “Universal Hash Functions
for Emerging Ultra-Low-Power Networks,” Proc. Conf.
Comm. Networks and Distributed Systems Modeling and
Simulation (CNDS 04), Soc. for Modeling and Simulation
Int’l (SCS), 2004, in press.

9. M. Wegman and L. Carter, “New Hash Functions and Their
Use in Authentication and Set Equality,” J. Computer and Sys-
tem Sciences, June 1981, pp. 265-279.

10. J. Black et al., “UMAC: Fast and Secure Message Authenti-
cation,” Proc. Advances in Cryptology (Crypto 99), LNCS
1666, Springer, 1999, pp. 216-233.

11. J. Pelzl et al., “Hyperelliptic Curve Cryptosystems: Closing
the Performance Gap to Elliptic Curves,” Proc. Cryptographic
Hardware and Embedded Systems (CHES 03), LNCS 2779,
Springer, 2003, pp. 351-365.

Jens-Peter Kaps is an assistant professor of electrical and
computer engineering in the Volgenau School of Informa-
tion Technology and Engineering at George Mason Uni-
versity. His research interests include ultralow-power
cryptographic hardware design, computer arithmetic, effi-
cient cryptographic algorithms, and computer and network
security. Kaps received a PhD in electrical and computer
engineering from Worcester Polytechnic Institute. He is a
member of the IEEE Computer Society and the Interna-
tional Association of Cryptologic Research. Contact him at
jpkaps@computer.org.

Gunnar Gaubatz is a PhD candidate in the Department of
Electrical and Computer Engineering at Worcester Poly-
technic Institute and a research assistant with the Cryptog-
raphy and Information Security Laboratory. His research
interests are in fault-tolerant cryptography, computer arith-
metic, and low-power digital circuits. Gaubatz received an
MS in electrical engineering from Worcester Polytechnic
Institute. He is a student member of the IEEE Computer
Society and the International Association for Cryptologic
Research. Contact him at gaubatz@ieee.org.

Berk Sunar, an associate professor in the Department of
Electrical and Computer Engineering at Worcester Poly-
technic Institute, is the head of the Cryptography and Infor-
mation Security Laboratory. His research interests include
finite fields, elliptic curve cryptography, low-power cryp-
tography, and computer arithmetic. Sunar received a PhD
in electrical and computer engineering from Oregon State
University. He is a member of the IEEE Computer Society,
the ACM, and the International Association of Cryptologic
Research. Contact him at sunar@ece.wpi.edu.

R2kaps.QXP 23/1/07 12:12 PM Page 44

