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Abstract. It is important that systems that exhibit proactive behaviour do so in a way that
does not surprise or frustrate the user. Consequently, it is desirable for such systems to
be both personalised and designed in such a way as to enable the user to scrutinise her
user model (part of which should hold the rules describing the behaviour of the system).
This article describes on-going work to investigate the design of a prototype system that
can learn a given user’s behaviour in an office environment in order to use the inferred
rules to populate a user model and support appropriate proactive behaviour (e.g. turning
on the user’s fan under appropriate conditions). We explore the tension between user con-
trol and proactive services and consider issues related to the design of appropriate trans-
parency with a view to supporting user comprehensibility of system behaviour. To this end,
our system enables the user to scrutinise and possibly over-ride the ‘IF-THEN’ rules held
in her user model. The system infers these rules from the context history (effectively a data
set generated using a variety of sensors) associated with the user by using a fuzzy-decision-
tree-based algorithm that can provide a confidence level for each rule in the user model.
The evolution of the system has been guided by feedback from a number of real-life users
in a university department. A questionnaire study has yielded supplementary results con-
cerning the extent to which the approach taken meets users’ expectations and requirements.

Key words. context history, intelligent environment, inference, machine learning, proactive
behaviour, prototype deployment, scrutability

1. Introduction and Motivation

Over the past decade, one of the predominant trends in computing has been ubiq-
uitous computing, the term having first been proposed by Weiser in the early 1990s.
His vision included the notion of increasing the productivity or welfare of a user
situated in a computer-everywhere environment by supporting human assistance
in an intimate way (Weiser, 1991). One research domain that requires the com-
puter-everywhere model of ubiquitous computing is that of the intelligent environ-
ment (Coen, 1998). In this domain, a wide range of physical devices (e.g., lights,
audio/video equipment, heaters, air conditioning equipment, windows, curtains,
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etc.) can be controlled automatically on the basis of the context of a house
or office and the preferences of the inhabitants (e.g., preferred temperature, pre-
ferred light level, energy consumption policies, etc.). One promising technique for
achieving such intelligent environments is context-aware computing. Context-aware
systems have been defined by Dey and Abowd (2000) as:

“systems [that] adapt according to the location of the user, the collection of nearby
people, hosts, and accessible devices, as well as to changes to such things over time”.

However, as is described by Cheverst et al. (2001), when designing context-aware
systems designers need to be conscious of a number of potential pitfalls in order
to ensure that the context-aware system maintains appropriate levels of predictabil-
ity and provides sufficient transparency to enable users to trust the behaviour of
the system, to understand what adaptation strategies are in place, and to over-ride
these adaptation strategies in those circumstances where such user control is war-
ranted. As is noted by Jameson et al. (2004), the term transparency is an over-
loaded term in the literature on human-computer interaction. For the remainder
of this article, we will use the more specific term comprehensibility to suggest that
the user:

“ . . . can look through the outer covering (e.g. a glass box) to examine the inner
workings of the device.”

Concerning this need for comprehensibility, Abowd and Mynatt (2000) make
similar comments when discussing key challenges in the ubicomp domain:

“One fear of users is the lack of knowledge of what some computing system is
doing, or that something is being done ‘behind their backs”’.

Unfortunately, one implication of signalling to the user that the system is ‘doing
something behind their back’ is the potential for inappropriate interruption of the
user’s current task or activity. The negative impact of interruptions on task perfor-
mance, particularly due to the shift of attention and memory load, has been widely
documented in various studies. Despite the impact of interruptions on task perfor-
mance, it has been hypothesised that a well-designed user interface may compen-
sate for such negative effects and exploit the potential of multitasking which, with
appropriate support, people are capable of. For an excellent review of this work
see McFarlane and Latorella (2002).

Scrutability refers to the ability of a user to interrogate her user model in order
to understand the system’s behaviour. In relation to ubicomp environments, Kay
et al. (2003) describe how:

“. . . when the user wants to know why systems are performing as they are or what
the user model believes about them, they should be able to scrutinise the model and
the associated personalisation processes.”

Relating scrutability to the issue of control, Kay et al. (2003) also state that:
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“. . . one of the important requirements of ubiquitous computing, [is] that of ensuring
user control over the model”

and

“We see scrutability as a foundation for user control over personalization”.

In this article, we describe our formative work on exploring the comprehensibil-
ity, scrutability and control issues associated with the on-going development and
evaluation of an Intelligent Office System, hereafter referred to as IOS. The sys-
tem can learn a given user’s behaviour in an office environment in order to use
inferred rules to populate his or her user model and support appropriate proac-
tive behaviour, such as turning on the user’s office fan under appropriate contex-
tual conditions (Byun and Cheverst, 2004). When we use the term proactive, we
agree with the understanding of the term presented by Salovaara and Oulasvirta
(2004) whereby:

“Proactive systems adhere to two premises: 1) working on behalf of, or pro, the user,
and 2) acting on their own initiative.”

Our investigation is interested in uncovering and exploring:

• The possible techniques and surrounding issues for making the behaviour of
the system comprehensible to the user and the impact this can have on the
selection of underlying machine learning approach.

• Issues surrounding how users can be given appropriate levels of control while
still avoiding undue levels of interruption.

The IOS infers its rules from the context history (effectively a data set generated
using a variety of sensors) associated with the user. Part of our original motiva-
tion was to determine whether it would be possible for context history to be used
to infer the nuances of a given user’s behaviour. For example, with regard to the
temperature inside an office, there may be numerous ways in which a user might
attempt to cool the temperature. She might open the door (if it is cooler outside),
close the blind (if strong sunlight is shining into the office), turn on the fan (if she
is not engaged in an activity where the noise of the fan would be distracting), open
a window (if it is not too noisy outside) etc. Our hypothesis was that by having
an appropriate set of sensors recording context such as office temperature, level of
light, etc., it would be possible for a system to learn the user’s favoured approach
for controlling the office temperature and then (to an extent acceptable to the user)
automate the process, e.g. by turning on the fan.

The system that we have developed learns from a context history using either a
standard or a fuzzy decision-tree-based algorithm; the latter is capable of provid-
ing the user with an idea of the confidence level associated with the inferred rules.
Adopting this decision tree approach enables users to inquire into the behaviour
of the system by being allowed to scrutinise and possibly override the ‘IF-THEN’
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type rules held in her user model. Currently, a number of users in a university
department are running the system (the software for which is publicly available) in
order to explore the feasibility of the approach and user acceptance. We have also
carried out a questionnaire-based survey (completed by 30 participants) in order
to obtain further insights into the levels of comprehensibility and control sought
by its users.

The remainder of this article is structured as follows. In the following section,
we discuss related work in this particular application domain. Next, in Section
3, we discuss in detail our approach both in terms of research methodology and
technical decisions (including our use of decision tree learning and use of fuzzy
logic). The IOS is of course composed of both software and hardware components
(not forgetting the user). In Section 4, we describe the hardware used by the sys-
tem to sense the user’s environment and actuate supported devices. Then Section
5 describes, by way of a walkthrough, the user interface to the IOS. In Section 6,
we describe an analysis of the findings to date, including lessons learned and the
results of the questionnaire-based user survey. The penultimate section on future
work is followed by a section presenting a summary and concluding remarks.

2. Related Work

This section initially outlines some representative proactive systems developed for
home environments, which particularly address the issues of comprehensibility and
control. We continue by describing research projects which specifically focus on the
relationship between user control and service automation. Finally, we discuss issues
related to interruptibility (arsing in the context of proactive behaviour).

2.1. user control in automated/context-aware systems

The aim of the Adaptive House project (Mozer and Miller, 1998) at the Uni-
versity of Colorado, Boulder, was to make a home that can adjust its functions
to the schedules and lifestyles of the inhabitants. A house in Boulder, Colorado
was fitted with more than 75 sensors capable of sensing the physical environ-
ment in the house. Data were gathered, for example, on room temperature, light
level, sound level, and door and window positions. The developers combined two
machine learning algorithms in order to realise adaptive behaviour. First, an arti-
ficial neural network attempts to predict the likely location of an inhabitant in
the next two seconds. Second, a reinforcement learning algorithm determines an
action (e.g., turning lights on/off and setting their intensities) that has the min-
imum expected discounted cost with respect to the prediction of the inhabitants’
location. Unlike our approach, the behaviour of the Adaptive House control sys-
tem cannot be scrutinised, nor can the user explicitly influence it.

The EasyLiving Project (Brumitt et al., 2000) was concerned with the devel-
opment of an architecture and suitable technologies to enable typical PC-focused
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activities to move from a fixed desktop into the environment as a whole. The
project focused on the technologies of middleware, geometric world modelling,
perception, and service description. Furthermore, the project team implemented
several applications to operate within an intelligent space where a user model
of each person is maintained, storing, for example, the user’s physical appear-
ance, authentication instructions, and also personal preferences. One application,
‘Media Control’, was capable of proactively playing various media types (for exam-
ple, a CD, MP3, DVD or Videotape) based on the user’s preferences and current
location.

Intille (2002) designed the Changing Places/House n, a full-scale single-family
home with an integrated and ubiquitous sensor architecture, as a model home for
the future. The house was outfitted with a computer-controlled heating, ventilat-
ing, air-conditioning (HVAC) system, but it was not used to automate fully control
of the condition of the environment. Instead, the system provides subtle reminders
to the inhabitants to perform a certain action. For example, the system will not
open the window by itself but will turn on a tiny light on the window in order
to inform the user that it is the time to open the window. In this scenario, Intille
raised two important issues that are closely related to our research (and which we
discuss in more detail in Sections 6.2.3.1 and 7.4):

• There is an inherent tension between the amount of control the user has over
a system and the benefits she may enjoy from proactive services.

• The suggestion to be presented to a user should not divert the user’s attention
from their current task.

With regard to these issues, Intille (2002) argues that the complexity of algorithms
for making a decision (e.g. opening the window) may prevent the user from under-
standing the behaviour of the system and could therefore be perceived as “unex-
plainable intelligence”.

The three systems outlined above mark distinct areas within a design space
along the two dimensions of control and scrutability. Control may vary from com-
plete system control to full user control, whereas scrutability varies from low to
high (see Figure 1).

The IOS, which is the focus of this article, offers high scrutability and allows
the user to exert a high level of control.

The following systems represent cases of supporting proactive behaviour based
on some model of the user or inhabitants. Mitchell et al. (1994) developed the
Calendar APprentice (CAP) application to assist a user with calendar scheduling
based on the user’s scheduling preferences. In particular, through the design of the
CAP, the researchers explored the potential of machine learning methods for the
implementation of personal software assistants. Each night, the CAP system runs
a decision tree learning algorithm on a chunk of the user’s most recent calendar
information, in order to refine the set of rules that will be used to provide advice
on the following day. The work described in this article extends the approach
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(Intille, 2000) 
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EasyLiving Project  
(Brumit et al., 2000)

Figure 1. Two-dimensional design space spanning control and scrutability dimensions.

presented by Mitchell et al. by using fuzzy decision tree learning to provide users
with both user-confirmed and fully automated proactive behaviour for multiple ser-
vices.

Barkhuus and Dey (2003) report on findings from a study in the context of
a mobile scenario, where they investigated the relationship between user control
and service automation. In their particular setting, mobile phone users were willing
to give up control for a number of (future) services such as tracking the loca-
tion of friends or recommendation of nearby restaurants at lunch time. Although
their study relied on the participants to imagine their usage patterns if such a ser-
vice was available, one of their main findings was that users were willing to give
up control if the benefits (i.e. the convenience or added value) of doing so was
high.

However, there may be further, less obvious, drawbacks to giving up con-
trol. For example, Intille and Larson (2003) cite Rodin and Langer (1977) to
point out that “lack of control over aspects of life has been shown to dimin-
ish health”. This is the main reason why, in the Changing Places/House n pro-
ject, they decided to provide subtle clues to the user to perform an action (e.g., a
glowing light switch to suggest turning on the light) instead of a fully automated
system.

In this special issue, Carmichael et al. describe their accretion-resolution user
modeling representation, which enables a user to scrutinise her user model, the
processes that determine its content, and the way that it is used in the ubiquitous
computing environment. Their approach is also capable of representing other enti-
ties (e.g., sensors), and resolving (by assigning reliability metrics) the fact that cer-
tain sensors (e.g., location sensors) may provide conflicting evidence regarding the
user’s context at a given time.
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2.2. interuptability

A further issue in the context of proactive behaviour is the kind and impact of
the interruption that occurs when a system performs a proactive action or raises
the user’s awareness of a planned proactive action.

There is a negative relationship between interruption frequency and perfor-
mance on complex tasks (Speier et al., 1997). In addition, switching between tasks
comes with a time cost that increases with task complexity and unfamiliarity
(Rubinstein et al., 2001). McFarlane and Latorella (2002) suggest that timing of
an interruption must be context-sensitive.

There appear to be individual differences in the ability of people to accommo-
date interruptions, and this fact must be accounted for in an intelligent system
(McFarlane and Latorella, 2002). Therefore, the adaptivity of such a system should
be tuned to a user’s profile in terms of her behaviour patterns and her ways of
handling interruptions. The individual differences in terms of sensitivity to differ-
ent modalities appear to have greater impact on the disruption caused by interrup-
tions than the interruption modalities themselves, i.e. heat, smell, sound, vibration,
light (Arroyo et al., 2002).

McFarlane and Latorella (2002) suggest various methods for responding to
interruptions and discuss the following four basic solutions for coordinating inter-
ruptions: (i) as soon as the system identifies the need for proactive behaviour
(immediate interruptions); (ii) at a moment specified by the user after previous
negotiation with the system (negotiation); (iii) at a moment decided on by the
system as appropriate for interruption (mediated); or (iv) all the interruptions
can occur at once at a previously arranged moment (scheduled). The findings in
McFarlane and Latorella (2002) obtained through studying the effects of interrup-
tion on tasks carried out on a desktop computer suggest that negotiation is the
best solution in terms of task performance for almost all situations, but for those
where the timing for handling the interruption is critical, the best solution is the
immediate interruption.

An excellent analysis of the critical factors surrounding the effective integration
of automated services with direct manipulation interfaces is provided by (Horvitz,
1999). It includes the challenge of decision making under uncertainty (e.g., about
the user’s current goals), the need to consider the status of a user’s attention in
the timing of services, and “employing dialog to resolve key uncertainties” while
“considering the costs of potentially bothering a user needlessly”.

3. Approach

3.1. overview of the technical approach

In order to ascertain the feasibility of supporting modelling-based proactive adap-
tations in a user’s office environment, our current work has involved the design
and implementation of a system to:
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• Utilise context history in order to learn the patterns of the user’s behaviour
in her physical office environment.

• Support modelling-based proactive adaptations (opening/closing the window,
turning on/off the fan, etc.) based on both the patterns learned (represented
as a set of rules) and the state of the physical office environment (realised
through a set of sensors).

The contexts considered in the experiment are: temperature, humidity, noise level,
light level, the status of the window, the status of the fan, and the location of
a user. Our system collects and accumulates the contexts as a context history.
An early version of the system required the user to notify the system explic-
itly of instances when she turned on/off the fan or opened/closed the window in
her office. Unsurprisingly, initial user trials showed that this task was simply too
arduous for the user (and hardly in the spirit of ubicomp). Therefore, we have
redesigned the system to collect context automatically from the user’s physical envi-
ronment if she has the appropriate sensors available.

Once a context history has been gathered, a set of human comprehensible rules
is induced which represent the user’s preferences for the activation of her fan and
heater. On the basis of these rules, our system can provide a suggestion to the user
when the environmental context in the user’s office changes (e.g., if the tempera-
ture rises above a given threshold value). It is important to note that, whenever,
the system suggests an adaptation (e.g., “Shall I turn on the fan?”), the user can
dismiss the suggestion.

An actuator based on X10 (X10, 2004) technology is used to turn on/off the
user’s heater, fan or lamp. An early version of the system required the user to
‘imagine’ that the system was capable of turning on the fan when the physical con-
text conditions were met. Again, we found that this approach was far from suitable
for enabling us to gain an appreciation of the real reaction that a user would have
to the system actually turning on her fan and highlights the importance of using
working prototypes when developing this kind of interactive ubicomp application.

Our system comprises a database with several tables, storing raw context his-
tory, symbolised context history and both learnt and user-specified rules. As illus-
trated in Figure 2, the system also consists of a context manager, an inference
engine, and an adaptation manager.

The context manager collects context from sensors (Byun and Cheverst, 2004).
If within a period of one minute there is at least one change in a raw context value

Figure 2. The design for providing dynamic adaptations.
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(e.g., if the temperature changes from 24 to 25 ◦C, or the user turns on/off the fan),
then the context manager generates a “context changed” event and stores the con-
text in the context history. That is, while no state changes occur, the size of stored
context history remains constant. The context manager also performs the symbol-
isation of raw context values.

The adaptation manager listens for the “context changed” events generated by
the context manager. Next, the adaptation manager decides which adaptation must
be made on the basis of both the current context (e.g., the current temperature)
and the user model (which contains the set of learnt or predefined rules that rep-
resent the user’s preferences).

The inference engine is responsible for extracting rules based on the context his-
tory and placing these in the user model.

3.2. selection of a decision-tree-based learning algorithm

In the research field of user modelling, machine learning is actively investigated
as a practical method to learn a user’s interests, preferences, knowledge, goals,
habits, and/or other properties in order to adapt the services to the user’s indi-
vidual characteristics (see, for example Mitchell et al., 1994; Pohl, 1996). As was
first described in the introduction section, our primary requirement for our sys-
tem was that it should facilitate comprehensibility in order for the user to be able
to understand what is being done by the system and why the system is doing it
(i.e., to scrutinise the behaviour of the system). This overriding system requirement
implied selecting a learning algorithm that could provide the user with an explicit
and understandable explanation for proactive behaviour. Generating rules that are
readily intelligible by humans is one of the advantages of decision tree learning
(Mitchell et al., 1994). Thus, at an early design stage, we chose to adopt a deci-
sion tree learning approach (Byun and Cheverst, 2003).

3.3. use of fuzzy logic

While a decision tree is accessible to an average human user, the underlying model
of crisp cut points (see the upper image in Figure 3) does not quite match human
thinking. To alleviate this problem without sacrificing scrutability of the inference
process, we chose to use fuzzy logic. Instead of crisp boundaries between catego-
ries, fuzzy logic introduces a membership function, which reflects how well a given
value falls into a category (see the lower image in Figure 3). On the basis of a
fuzzy representation of context (Mantyjarvi and Seppanen, 2002), we use fuzzy
decision trees (Janikow, 1996) for inference (see also Zeidler and Schlosser, 1996;
Shiu et al., 2000; Guetova et al., 2002). Our rationale for the use of a fuzzy deci-
sion tree is its potential to express symbolically the rules governing the system’s
proactive behaviour. In turn, this representation supports users’ understanding of
these rules, which provides a basis for scrutinising system behaviour. Enabling
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Figure 3. Conventional (top) and fuzzy (bottom) representations of temperature.

users’ access to a symbolic representation of these rules (i.e. rule visualisation)
supports users in developing both a structural (“how the system works”) and a
functional (“how the system can be used”) model of the system.

Figure 3 illustrates conventional and fuzzy representations of temperature.
Using the example partitions shown in this figure, the temperature 26 ◦C would be
discretised into the categorical value ‘hot’ with the membership value 0.75, and the
temperature 28 ◦C would be discretised into the same categorical value but with
the membership value 1. Consequently, even though the two temperatures 26 and
28 ◦C have the same categorical value ‘hot’, they have different membership val-
ues in accordance with people’s natural way of understanding such categorisations.
Therefore, we would argue that this fuzzy representation improves the communica-
tion between users and our system. Note that the cut points shown in Figure 3 are
for illustration only and that the system we present later in this article provides a
means for the user to specify their own cut points if they so desire.

The membership functions of the fuzzy sets, in conjunction with information
gains, are used to build a fuzzy decision tree. We will illustrate this process using
the small set of context history (in the form of continuous values) shown in Table I
(note that this same history is also used in the user interface walkthrough pre-
sented in Section 5). Table II shows the discretised set of context history based on
Table I and the cut points for each attribute that is defined in our prototype sys-
tem (the actual cut points used are those shown in Figure 15). For example, in the
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Table I. A continuous-valued raw context history

Nr. Date Time Temp Noiselevel Humidity Light Window Fan Heater

1 2004-26-11 14:36:01 23 55 30 52 Closed Off Off
2 2004-26-11 14:37:01 24 55 30 49 Closed On Off
3 2004-26-11 14:38:01 25 55 30 51 Closed On Off
4 2004-26-11 14:39:01 26 55 30 50 Closed On Off
5 2004-26-11 14:40:01 22 68 30 50 Closed Off Off
6 2004-26-11 14:41:01 22 62 30 50 Closed Off Off
7 2004-26-11 14:42:01 21 55 30 49 Closed Off On
8 2004-26-11 14:43:01 20 55 30 50 Closed Off On
9 2004-26-11 14:44:01 18 55 30 50 Closed Off On

10 2004-26-11 14:45:01 19 76 30 50 Closed Off On

Table II. A discretised context history including membership details of the Fan rule

Noise
Nr. Date Time Temp Level Humidity Light Window Fan Heater Membership

1 2004-26-11 14:36:01 Mild Loud Normal Normal Closed Off Off 0.6
2 2004-26-11 14:37:01 Mild Loud Normal Normal Closed On Off 0.45
3 2004-26-11 14:38:01 Hot Loud Normal Normal Closed On Off 0.3
4 2004-26-11 14:39:01 Hot Loud Normal Normal Closed On Off 0.45
5 2004-26-11 14:40:01 Mild Loud Normal Normal Closed Off Off 0.6
6 2004-26-11 14:41:01 Mild Loud Normal Normal Closed Off Off 0.6
7 2004-26-11 14:42:01 Mild Loud Normal Normal Closed Off On 0.45
8 2004-26-11 14:43:01 Mild Loud Normal Normal Closed Off On 0.3
9 2004-26-11 14:44:01 Cold Loud Normal Normal Closed Off On 0.6

10 2004-26-11 14:45:01 Cold Loud Normal Normal Closed Off On 0.45

case of the first row, the temperature 23 ◦C is discretised to ‘mild’ with membership
1 on the basis of the cut points in Figure 15. Other continuous-valued attributes
can be discretised in the same manner:

NoiseLevel is ‘loud’ with membership 1,
Humidity is ‘normal’ with membership 0.6,
Light is ‘normal’ with membership 1.

In the case of the Window attribute, the membership value of ‘closed’ is consid-
ered to be 1, because it is not a continuous-valued attribute. In order to capture
the overall extent to which the predictive attributes have the specified values, we
define a membership value for the rule as a whole (see Table II) in terms of the
product of the membership values of all of the attributes on the left-hand side:

χTemp(mild)χNoiseLevel(loud)χHumidity(normal)χLight(normal)χWindow(closed)

= 1.0 · 1.0 · 0.6 · 1.0 · 1.0

= 0.6
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3.3.1. Calculating the Root Node for the Fuzzy Tree with the Fan target function

The first step in building a fuzzy decision tree is finding the root node. For this
purpose, the information gain for each attribute A must be calculated. In the fol-
lowing calculation, S refers to the whole set of context history and the base of
the logarithm is 2. The formulas for the calculation of entropy and information
gain are essentially the same as those for building a conventional decision tree.
However, in the case of a fuzzy decision tree, the membership values of the tar-
get attribute (for example, the first row membership of Fan is 0.6) should be used
in the calculation. The corresponding formulas for the entropy E(S) and the infor-
mation gain G(S, A) are as follows:

E(S) = − mon

mFan
log

mon

mFan
− moff

mFan
log

moff

mFan

where

mon =
∑

s∈S

χFan(on) sum of all membership values for Fan = on

moff =
∑

s∈S

χFan(off) sum of all membership values for Fan = off

mFan = mon + moff

G(S, A) = E(S) − mx

mA
E(S, A = x) − my

mA
E(S, A = y) − mz

mA
E(S, A = z)

where

mx =
∑
s∈S

χA(x) sum of all membership values for A = x

my =
∑
s∈S

χA(y) sum of all membership values for A = y

mz =
∑
s∈S

χA(z) sum of all membership values for A = z

mA = mx + my + mz

Therefore, the entropy of the whole set and the information gain of Temp can be
calculated from the membership values shown in the last column of Table II as
follows:

mon = 0.45 + 0.3 + 0.45 = 1.2

moff = 0.6 + 0.6 + 0.6 + 0.45 + 0.3. + 0.6 + 0.45 = 3.6

E(S) = −1.2
4.8

log
1.2
4.8

− 3.6
4.8

log
3.6
4.8

= 0.813

E (S, Temp = hot) = −0.3 + 0.45
0.3 + 0.45

log
0.3 + 0.45
0.3 + 0.45

− 0
0.3 + 0.45

log
0

0.3 + 0.45
= 0



EXPLORING ISSUES OF USER MODEL TRANSPARENCY 247

E (S, Temp = mild) = − 0.45
0.6 + 0.45 + 0.6 + 0.6 + 0.45 + 0.3︸ ︷︷ ︸

=3.0

log
0.45
3.0

−2.55
3.0

log
2.55
3.0

= 0.61

E (S, Temp = cold) = − 0
0.6 + 0.45

log
0

0.6 + 0.45

− 1.05
0.6 + 0.45

log
1.05

0.6 + 0.45
= 0

G(S, A) = E(S) − 0.75
4.8

E(S, Temp = hot) − 3.0
4.8

E(S, Temp = mild)

−1.05
4.8

E (S, Temp = cold)

= 0.43

In the case of the attributes NoiseLevel, Humidity, Light, and Window, all
information gains are zero since they have only one attribute value (for example,
all values of NoiseLevel are ‘loud’). According to the information gain measure,
Temp would provide the best prediction for target attribute Fan. Therefore it is
selected as the root node.

Now let us consider a subset of the context history that contains the cases
where temperature is mild (row numbers 1, 2, 5, 6, 7, 8). In this case, the infor-
mation gains of all remaining attributes are also zero, because they have only one
attribute value. Therefore, we can create a leaf node here. The membership values
of ‘on’ and ‘off’ in the leaf node can be calculated by normalizing the target mem-
bership values in the subset: the membership of ‘on’ is:

mTemp = mild
on

mTemp = mild
= 0.45

0.6 + 0.45 + 0.6 + 0.6 + 0.45 + 0.3
= 0.15

mTemp = mild
off

mTemp = mild
= 0.6 + 0.6 + 0.6 + 0.45 + 0.3

0.6 + 0.45 + 0.6 + 0.6 + 0.45 + 0.3
= 0.85

where

mTemp = mild
on =

∑
χFan(on)

s∈S|Temp = mild
sum of all membership values for Fan = on

mTemp = mild
off =

∑
χFan(off )

s∈S|Temp = mild
sum of all membership values for Fan = off

mTemp = mild = mTemp = mild
on + mTemp = mild

off

Since the membership value of ‘off’ for this node is greater than the one for ‘on’,
we can extract the rule ‘if Temp = mild and NoiseLevel = loud and Humidity =
normal and Light = normal and Window = close, then Fan = off with member-
ship 0.85’.
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(a) (b)

Figure 4. (a) A fuzzy decision tree for Fan (see section 3.3.1. for justification of values shown in
nodes). (b) A conventional decision tree for Fan.

In the cases of the subset of context history for Temp = ‘hot’ and Temp = ‘cold’,
the information gains of all remaining attributes are zero for the same reason as
in the above case, and all target values are the same (‘off’). Therefore, we can cre-
ate leaf nodes here without normalizing the target membership values. The rules
from these two cases are: ‘If Temp = hot, then Fan = on with membership 1’ and
‘If Temp = cold, then Fan = off with membership 1’. Now we can draw a fuzzy
decision tree as shown in Figure 4a. In contrast, if a new nonfuzzy decision tree
algorithm were used, the tree produced would appear as that shown in Figure 4b.
Please note that the peculiar shape of the decision trees is a result of the small
size of the dataset used in the example. The trees generated by the actual system
are more complex, having a higher branching factor on each level.
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3.3.2. Illustration of Adaptation Procedure based on the Fuzzy Tree with the Fan
Target Attribute

In this subsection, we present an actual example for how adaptation is performed
by our prototype system. The example is based on the fuzzy decision tree shown
in Figure 4a, which was derived from the small sample of context history shown
in Table I. Let us assume that the environmental conditions in the user’s office are
as follows:

Temperature is 26 ◦C, NoiseLevel is 55 dBA, Humidity is 29%, Light is 68 lux,
and Window is closed.

The first step of adaptation in this new situation is the fuzzification of each
context attribute. The corresponding membership functions are shown in the boxes
between the nodes in the fuzzy decision tree shown in Figure 4a. For example,
according to the box shown just below the ‘NoiseLevel’ node, 55 dBA would be
categorised as ‘loud’ with membership 1. We can then compute the value of the
membership function χ for each value of the target attribute Fan in each leaf node
(A, B, C):

Leaf A:

χ (Fan = on) = χA(Fan = on)χ(Temp = hot) = 1 · 0.75 = 0.75

χ (Fan = off) = χA(Fan = off)χ(Temp = hot) = 0 · 0.75 = 0

Leaf B:

χ (Fan = on) = χB(Fan = on)χ(Temp = cold) = 0 · 0 = 0

χ (Fan = off) = χB(Fan = off)χ(Temp = cold) = 1 · 0 = 0

Leaf C:

χ (Fan = on) = χC(Fan = on)χ(Temp = mild)χ(NoiseLevel = loud)

·χ (Humidity = normal) χ (Light = normal)χ(Window = closed)

= 0.15 · 0.25 · 1.0 · 0.5 · 0.5 · 1.0 = 0.01

χ (Fan=off) = χC(Fan = off)χ(Temp = mild)χ(NoiseLevel = loud)

·χ (Humidity = normal) χ (Light = normal)χ(Window = closed)

= 0.85 · 0.25 · 1.0 · 0.5 · 0.5 · 1.0 = 0.05

Therefore, the total membership values for ‘Fan = on’ and ‘Fan = off’ are:

χ(Fan = on) =
∑

A,B,C

χ(Fan = on) = 0.75 + 0 + 0.01 = 0.76

χ(Fan = off) =
∑

A,B,C

χ(Fan = off) = 0 + 0 + 0.05 = 0.05



250 KEITH CHEVERST ET AL.

Note that each leaf node (the categorical value of the target function: on and off)
has a membership value that stems from the membership values of context history
data. In order to choose the value of the target function, the membership values
of leaf nodes and the membership values of current contexts are multiplied and
added for the same target values. Finally, the target value that has the largest total
is selected as a suggestion, i.e. ‘on’ with certainty level 0.76 for this proactive ser-
vice. Therefore, our system would turn on the fan (or suggest turning on the fan,
depending on the user’s preferences) with a confidence level of 0.76 (provided that
this value was higher than the threshold that determines whether proactive behav-
iour should occur).

3.3.3. The Fluctuation Problem

In any control system that controls part of an environment populated by human
users, fluctuations around a cut point pose a problem. For example, if a fan is
turned on whenever the temperature is higher than 25 ◦, it might happen that the
system continuously turns the fan off and on if the temperature fluctuates around
25 ◦. While fuzzy logic does not eliminate those problems per se, it is possible to
apply certain strategies to address fluctuations.

Perhaps the simplest approach to introduce a further action “leave unchanged”
for the right-hand side of rules. For example, if the rules specify that the fan is to
be turned off under 24 ◦, to be turned on above 26 ◦, and to be left unchanged oth-
erwise, fluctuation on the basis of small temperature changes cannot occur. If, for
example, the fan is on because the temperature is 27 degrees, it will not be turned
off again until the temperature drops below 24 ◦.

In another approach, the time interval since the last change in the state of the
device could be made a feature to be considered in the left-hand side of the rules.
In that case, for example, the system might learn not to make any change sooner
than 5 min after the previous change.

3.4. evaluation methodology

Given our interest in both the technical and human factors issues associated
with the development of a system supporting proactive behaviour in an intelligent
office environment, our evaluation methodology has been to start our exploration
with the development of a simplified but working prototype system that can be
deployed at a relatively early stage. This early deployment has enabled user stud-
ies to commence and provide valuable feedback with regard to user acceptance of
the IOS concept and to drive future developments; in this respect we are adopting
a user-centred design approach. In order to accelerate exploration of issues where
appropriate, our evaluation methodology also includes the use of questionnaires
to focus on specific issues that are revealed by user feedback from the prototype.
For example, after the use of the prototype revealed issues about how users would
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prefer to visualise inferred rules and the confidence values associated with those
rules when scrutinising the behaviour of the system, a questionnaire was used to
enable a relatively quick and low-cost investigation into this issue (the results of
this particular aspect of our investigation are described in Section 6.2.3.2). How-
ever, as is argued below, the danger with this approach is that such responses are
not provided ‘in situ’ and that therefore such results must be judged with a certain
degree of scepticism. Our intention is for our current user studies to develop into
longtitudinal studies that should provide much-needed insights into the longer-
term implications of using and maintaining the IOS. Given the relatively short-
term nature of our studies, so far we can claim only to provide formative results
that may point to directions for further study.

4. The Hardware and Software Components of the Intelligent Office System

4.1. hardware components

The hardware components of the system are required for sensing physical context
in the user’s office and for actuating supported devices. Actuation (e.g., turning a
device on or off) occurs if a rule learnt by the system is triggered by the current
context (and the user has specified that actuation can occur without user verifica-
tion) or if the user chooses to use the system’s graphical user interface to instruct
the system to turn a given device on or off. The main hardware components of the
system comprise two different sensors (the ‘off-the-shelf ’ DrDaq data logger and a
purpose build current sensor) and the actuation system (based on the X10 system).
The following subsections describe these components in more detail.

4.1.1. The DrDaq Data Logger

In our experiment, we use a DrDAQ data logger from Pico Technology Ltd (see
Figure 5) in order to obtain the state of the user’s office environment. The DrDAQ
data logger has built-in sensors for detecting various environmental contexts (e.g.,
light level, sound level and temperature) and two external sensors. One of these
external sensors is used to sense whether or not the user’s window is currently
open, while the other one is used to sense humidity.

It is important to note that the accuracy of temperature sensed by the DrDAQ
is 2 ◦C at around 25 ◦C (the error margin depends on the temperature). If the
threshold between ‘hot’ and ‘mild’ is 25 ◦C, then this 2 ◦C error margin could
clearly be very significant (e.g., the same true temperature could be sensed as either
‘hot’ or ‘mild’). One approach we plan to investigate is the setting of appropriate
thresholds to determine the change required in a given raw sensor value before a
new value is recorded in the context history. This problem is similar in nature to
the problem of reacting to apparent changes in location sensed by Geographical
Positioning System (GPS) in which the inaccuracy can be in the region of 10 m.
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Figure 5. The Current Sensor (left), the Current Sensor attached to a user’s fan (center) and the
DrDaq Data Logger (right).

As was mentioned previously, the DrDaq module is used for detecting the
state of the window. This task is accomplished with an external reed switch
sensor that is positioned on the window frame and a small magnet located
on the moving part of window. When the window is closed, the magnet sits
very close to the reed switch, causing it to open, and when the window is
opened, the magnet moves away from the reed switch, causing it to close – these
changes are recognised by the DrDaq module and sent to the Intelligent Office
System.

4.1.2. X10-Based Actuation

In order to achieve actuation of devices, we have utilised X10 technology. It is
not possible to send X10 signals through the internal power wiring of the univer-
sity Computing Department in which our experiments have been taking place, so
a trivial but highly practical solution has simply been to plug the fan and X10
controller into the same gangway extension (see Figure 5). Using this approach,
the X10-based control signals need only travel successfully along the length of the
gangway extension.

Unfortunately, the reliability of standard X10 signalling cannot be guaranteed
or even verified in many cases, so to be sure of the status of a device, we have
developed the current sensor (i.e., the sensor for detecting changes in electrical
current) described in the following section.
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4.1.3. Current Sensor

Early user trials revealed that typical users tend to be reluctant to click manu-
ally on a check box in a dialog box every time they change the state of the fan
in their office in order to update their context history. Consequently we set about
developing a system that would enable the action of turning on a device to be
automatically detected. The current sensor that we developed (specifically for the
deployment of the IOS) is able to detect whether the fan, or any other standard
electrical appliance connected to the current sensor, is switched on or off at any
given time. It does this by measuring the amount of current that passes through
the mains power cable. A magnetic coil wound around the mains line produces a
voltage whenever the appliance is turned on, which is proportional to the amount
of current drawn by the appliance. This voltage is continuously sampled using an
analogue-to-digital (A/D) converter and a PIC microcontroller. Software running
on the PIC then detects transitions between the ’ON‘ and ‘OFF’ states of the
appliance on the basis of the output of the A/D converter. The current sensor in
Figure 5 is based on a Smart-Its (Holmquist et al., 2001) prototyping device. It
provides an RS232 and a wireless radio interface to other devices. This arrange-
ment allows direct interfacing with the IOS running on the PC.

4.2. software components

The database server used is the open source product MySQL� (www.mysql.com).
In addition to MySQL’s excellent reliability and ease of use, its open source nature
enables the entire IOS software to be made available for experimentation by other
research groups free of charge.

Referring back to the overall architecture diagram illustrated in Figure 2, the
‘Context Manager’, ‘Inference Engine’ and ‘Adaptation Manager’ components of
the software are all written in Java and are designed to be compiled and run under
any Java 2 environment. Additionally, MySQL provides an official Java DataBase
Connectivity (JDBC) driver, which was used throughout the system.

A significant portion of the software code is user interface code. The following
section describes in detail the user interaction supported by the system through its
graphical user interface.

5. User Interface Walkthrough

In order to help illustrate the behaviour of the system, we have generated rules that
are consistent with a sample piece of context history. We will now show what behav-
iour would be triggered on the basis of hypothetical environment values such as
temperature.

The current GUI is based on a main control window that is designed to run on
a display that is separate from the user’s primary desktop display (or displays), as
is shown below in Figure 6.
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Figure 6. The typical deployment of the control system (on a separate display).

The Main Control window to the IOS is shown in Figure 7. This GUI is divided
into four parts which correspond to different aspects of the functionality. The
Device Control part (in the left-hand two-thirds of the window) enables the user to
turn on and off devices in the office, to set preferences for fully automated behav-
iour, and to view associated rules. The current state of a device is shown through
text and through greying out of the text on the button that is not needed. The
Current State of Environment part (top right-hand part of window) shows the val-
ues currently being read from the DrDaq sensor and also presents these values in
terms of their main fuzzy classification (in order to help reinforce the user’s under-
standing of the relationship between numeric values and classifications). An earlier
version of the software did not contain this information, and it was only added
following requests from a number of users.

The Setting Location part (the centre right-hand part of the window) is the one
place where the system still does require the user to inform the system manually
of a context event (i.e., whether the user is in the office or not); we are currently
investigating a range of techniques for automatically sensing this information with
the high degree of accuracy required. Finally, the Intelligent Office Functions part
(the bottom right-hand part of window) is the primary part of the GUI for
enabling the user to control the behaviour of the IOS, including the ability to set
the proactive threshold to an appropriate level (including ‘off’) and to view the
context history.
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Figure 7. The Main Control GUI.

The following two sections describe the Device Control and Intelligent Office Func-
tions parts of the main GUI in more detail.

5.1. device control

The Device Control part of the window is used to enable the user to turn on or
off devices and it is intended to be the primary means for users to control devices.
We have found this part of the window to be much used in practice, largely due
to the convenient placement of the touch screen display (as shown in Figure 6). A
major benefit of this approach is that context relating to the turning on and off of
devices can be automatically captured and stored in the context history.

5.2. when a rule for device actuation is triggered

When a suggestion prompt is issued (which occurs if the user has indicated that a
prompt rather than automatic action is required) it is displayed on the main control
GUI. For example, if the system suggests that the fan should be turned off, then
the UI changes to that shown below in Figure 8 and the text on the ‘OFF’ button
flashes black and white. Note that in this example, the user is shown the confidence
level of the rule as a categorical value, in this case ‘High’ (see Section 6.2.3.3 for
questionnaire results regarding user’s preferences for visualising confidence levels).
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Figure 8. Display of a system prompt.

However, by altering their preferences a user can also choose to view the confidence
level as a decimal number, e.g. 0.85, if she prefers.

The user will not always want the system to offer a prompt before turning on
a device. For this reason, the GUI presents the user with tick boxes for allowing
proactive actions to occur automatically. Given the selection of tick boxes shown
in Figure 8, if a rule (with a high confidence level as per the user’s preferences)
became triggered for turning on the user’s fan, the fan would automatically be
turned on and the system would display the following message: “I have just turned
on the fan for you (confidence level: High)”. This facility was incorporated on the
basis of feedback from users of the system and the results of the questionnaire
study (see Section 6.2.3.1).

If the user wishes to enquire why that suggestion was made (i.e. scrutinise the
system), she can press on the appropriate button in order to view a window such
as the one shown below in Figure 9. Please note that for the purposes of this walk-
through we are using only a simple set of rules; in practice more complicated rules
can be generated.

Note that at this point the user also has the ability to stop using the rule
that generated the suggestion being used again by selecting the ‘Do Not Use The
Selected Rule Again’ button. If the user wishes to scrutinise the actual context his-
tory associated with a given rule, she can do so by selecting the rule and clicking
on the appropriate button. An example of the kind of output produced is shown
in Figure 10.

The user can also choose to view all the rules associated with a given appli-
ance at any time by pressing the ‘View Associated Rules’ button on the appropri-
ate ‘Device Control’ part of the Main Control GUI. The rules associated with the

Figure 9. Scrutinising the rule behind a prompt to turn off the fan.
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Figure 10. Scrutinising the context history associated with a given rule.

Figure 11. Scrutinising the rules associated with the fan.

fan, which are based on the context history shown in Tables I and II, are shown
in Figure 11. Note that the values shown in the ‘FanMem’ column in Figure 11
effectively provide a confidence level for each rule.

5.3. setting the threshold for proactive behaviour

The user is able to control the threshold at which proactive actions occur by click-
ing on the appropriate radio button. For example, if the user wishes actions with
a confidence level less than High to be ignored, then she would click on the High
setting. This function was added on the basis of the feedback from users testing
the system in their offices and the results of the questionnaire study. The user can
also turn off any proactive behaviour using this part of the GUI.

5.4. viewing the context history

As was described in Section 2, fundamental to our approach is the notion of
enabling the user to understand (or at least be able to scrutinise) the rules behind
the system’s behaviour. For this reason, and on the basis of the results of the
questionnaire, we have enabled the user to view her context history. The user
currently has two choices for viewing context history, either as raw data with
numerical values, as shown in Figure 12, or, symbolic data with symbolic values,
as shown in Figure 13.
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Figure 12. Screenshot illustrating a 10 row sample of ‘raw’ context history.

Figure 13. Screenshot illustrating a 10-row sample of ‘symbolic’ context history.

For reasons of simplicity, we have deliberately shown an amount of context his-
tory that is very small but large enough to convey the idea and to generate the
rules shown in Figure 11.

5.5. setting preferences and user-defined rules

The IOS enables users to change a variety of settings or preferences (e.g. the
boundaries used to separate different confidence categories used by the system). In
addition, the system enables users to add their own rules (an example of which is
shown in Figure 14) and to access and modify the ‘cut-points’ file, an example of
which is shown in Figure 15.

5.6. initiating the learning process

By pressing the Learn Rules button on the Main Control GUI (shown in Figure 8)
following the collection of a reasonable amount of context history, the user can
request the system to start inferring rules from her context history. A few hours of
context history can be sufficient; but the greater the size of context history used,
the higher the system’s ability to capture the nuances of the user’s behaviour.



EXPLORING ISSUES OF USER MODEL TRANSPARENCY 259

Figure 14. A user interface for enabling the user to add her own rules – the generated rule is shown
at the bottom of the window.

At the design stage, we needed to consider whether to adopt an on-line or an
off-line learning strategy. An on-line strategy would construct a user model incre-
mentally in real-time, while an off-line strategy builds or updates the user model
as a kind of batch job. Because of the high computational resources required to
run an on-line learning system, the current version of the IOS utilises an off-line
approach to learning.

Although we did not anticipate that the ability to scrutinise context history
would be particularly popular with a great many nontechnical users, the results
of the questionnaire (Section 6) indicated that many nontechnical users do desire
such a facility. Furthermore, we believe that the user’s trust in the system can be
fostered with this glass box (Karlgren et al., 1994) approach to the user modelling
aspects of the system.

6. Current State and Initial Evaluation

This section describes the current state of our prototype deployment (Section 6.1)
and the results of our questionnaire-based study (Section 6.2).
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Figure 15. A user interface for enabling the user to access and modify the ‘cut-points’ file.

6.1. current state of deployment

The initial version of the IOS was first deployed in February 2002. Since that time,
a number of modifications and improvements to the system have been made as
challenges to our approach have been encountered. Key modifications have been
the introduction of a fuzzy logic approach in January 2003, the utilisation of X10
technology in March 2004, and a complete user interface modification in Octo-
ber 2004. In March 2005, the system underwent significant modification in order
to increase overall reliability and ease of installation for nontechnical users. The
software for the system is available on the web (at http://www.comp.lancs.ac.uk/
computing/staff/kc/IntelligentOffice.html) so that other research groups can experi-
ment with the IOS.

This actual IOS system itself was deployed in the offices of four of the devel-
opers for approximately one month, during which the IOS was subject to mod-
ification. As is described below, the insights of these four real users were used
to inform the design of our questionnaire-based study, which involved partici-
pants with technical and nontechnical backgrounds and which revealed a generally
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positive approach toward proactive systems such as the IOS and provided a vali-
dation of the importance of enabling the user to scrutinise the reasons (i.e. rules)
behind proactive behaviour.

6.2. an initial formative questionnaire evaluation

The actual deployment of the system revealed many interesting issues, such as the
need to reduce cost (in terms of perceived user effort) and maximise user benefit.
It strongly informed the design of our questionnaire study, which sought both to
explore the general attitude of participants towards the IOS and to investigate the
following, more specific, issues:

• How much scrutability do users want and what are appropriate ways of sup-
porting it?

• How much control do users want, and what should be automatic?

Consequently, the questionnaire study was primarily an explorative one, aiming to
lead to hypotheses to be tested in subsequent evaluation studies.

6.2.1. Questionnaire Design

Table III presents a brief description of the various dimensions and associated
variables which encode the concept of user’s attitude with respect to an intelli-
gent control system such as the IOS. Apart from measuring the general attitude
towards such systems, the questionnaire also focuses on capturing two aspects of
great interest for our work, namely control and scrutability.

The questionnaire contained 52 items with a 5-point Lickert scale and 13 open
questions which enabled participants to make comments on the relevant issues. The
user profile was captured through questions that called for standard factual data.

For the benefit of subjects who had not had experience with the IOS, a descrip-
tion of the system was given, along with examples of screen shots and scenarios
describing how the system would behave under different circumstances.

6.2.2. Participants

The nonrandom sample comprised of 30 subjects: 26 potential users of the sys-
tem and four actual users. Among them were 25 males and 5 females. 63% of the
participants were younger than 35 years old. The 30 subjects differed greatly in the
extent of their hands-on experience with systems like the IOS; the four subjects who
had actually used the IOS represent one extreme, while the other extreme was rep-
resented by subjects who had no experience even with comparable systems. Indeed,
while 40% of participants declared themselves to have had previous experience with a
proactive system, 33% were not sure about what exactly constitutes a ‘proactive sys-
tem’, a fact indicating that the concept of a proactive system bears some ambiguity.
Completing the questionnaire required between twenty minutes and one hour.
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Table III. Concept operationalisation regarding user attitudes towards an intelligent control system
used as a basis for questionnaire design.

Dimensions Variables Items

General attitude
towards intelligent
control systems

Acceptance Previous experience with such
systems, (e.g., automatic doors,
Microsoft Office Assistant) in
different environments (i.e.,
home, work)

Error tolerance Tolerance of wrong decisions
made by the system during/after
the training phase; willingness
to allow the system to learn by
accepting system errors during
learning

Market potential Intention to buy, estimated
perceived value

Control and
interruption

User control Perceived importance of: ability
to amend system decisions,
system prompts before carrying
out
actions or without carrying out
actions, ability to change between
the system working automatically
or with a prompt, availability for
basic and expert views

Comprehensibility
and scrutability

Visualisation (of rules) Evaluation of: IF-THEN rule
tables, text-based formulation
of rules, decision trees, usage
of colour within decision trees,
context history

Confidence level (associated with
rules)

Preferred displayed format for
confidence values, need to be
able to choose the format, need
to be able to set the confidence
threshold for proactive actions
and system prompts

6.2.3. Results

In the following discussion, we report the results of statistical tests in order to con-
vey an idea of the likelihood that the results in question arose by chance alone.
The specific probabilities reported should not be taken at face value, because of
the large number of tests that were performed (including some whose results are
not reported here because conventional levels of statistical significance were not
attained). Instead, the results of the tests are intended to give an indication of
which hypotheses deserve more systematic testing in the future.

The presentation of the evaluation study results is organised according to the
dimensions and variables involved in the questionnaire design.

The majority of subjects reported being frustrated when a proactive system fails:
for automatic doors 80% and for the Microsoft� Office assistant 50%.
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More than 70% of subjects are happy to use technology at either home or work
and feel at ease with it. However, the study revealed that participants differentiated
between home and office environments when considering the acceptability of intel-
ligent control systems. More specifically, over 66% of participants would be happy
to have an intelligent control system deployed at home, while this figure drops to
less than 50% for deployment in a work/office environment.

In a work environment, only 13% of participants agreed to let the system learn
their behaviour patterns as a basis for its proactivity, when at home this changed
to over 60%. This finding is related to the fact that within a work environment,
people are less inclined to accept something which may impede their performance.
The reliability of such systems, i.e. the Microsoft Office Assistant, is perceived as
low. This attitude is related to participants’ tolerance for system errors, which is
generally low, decreasing from 50% during the training phase to 16% after that.
Not surprisingly, there is a significant correlation between the degree of perceived
usefulness of Microsoft Office Assistant and the willingness to tolerate system
errors during the training phase (r(28) = 0.38, p < 0.05).

The perceived market value for such a system depends on system placement:
56% of study participants would pay more than 10 pounds for it when placed at
home, while only 36% participants were willing to pay more than 10 pounds for
an office-based system.

6.2.3.1. Control and Interruptions. More than 90% of participants in the study
sample expressed the need for controlling the system (scoring 4 or 5 out of 5).
Furthermore, 75% of participants desired the system to prompt before carrying
out actions. However, 69% of participants wanted the ability to switch between the
having the system working automatically or with a prompt. In terms of system
transparency, 66% of participants wanted access to basic and expert views, the lat-
ter providing “ . . . the ability to look at the ‘rules’ which have been generated”.

Starting the system and forgetting about it contradicts the need of being in con-
trol so unsurprisingly it was an option that most participants did not approve of
(17%).

6.2.3.2. Rule Visualisation. The questionnaire study also sought to explore the
participant’s preferences for different formats for visualising the rules embedded
in the user mode. In the questionnaire, participants were shown actual examples
of the different types of visualisations before being asked about their preferences.
The results revealed that 69% of participants thought (giving a rating of 4 or 5
out of 5). that the textual representation of rules (e.g. “I turned on the fan because
the temperature is hot and the humidity is high”) were a clear and easy way of vi-
sualising the rules.

Alternatively, 59% of participants felt that the decision tree was a clear repre-
sentation and 62% of participants thought that the use of colour (as illustrated in
the questionnaire) helped with the comprehensibility of the decision tree.
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Figure 16. Users’ strong preferences with respect to various forms of visualising the confidence level
associated with rules governing the system’s proactive behaviour.

Only 10% of users felt that the IF-THEN rule table approach (illustrated in the
questionnaire using a table similar to that shown in Figure 11) was a clear way of
representing the rules.

It was interesting to find that more than 60% of participants held a strong pref-
erence for having the option of viewing their context history “occasionally and
only when I request it”.

6.2.3.3. Confidence Level Visualisation. Another way to make a system’s decisions
transparent to its users is by making the confidence level of a suggestion visible
(e.g. Figure 8). More than 50% of study participants agreed that the confidence
level offers a basis for understanding the system and the accuracy of its judge-
ments. For this questionnaire study, we considered two modalities of visualising
the confidence level: decimal format and categorical format, i.e. ‘high’, ‘medium’ or
‘low’. In Figure 16 the bars represent the percentage of users who strongly favour
different forms for visualising the confidence level of rules embedded in the user
model (giving a rating of 4 or 5 out of 5).

6.2.4. Exploring Attitudes towards Deployment in Home vs. Office Environments

Participants appeared to be more comfortable having an intelligent control system
at home rather than at work. More participants considered that the system control
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should be diminished in a work environment compared to a home environment.
This attitude may be fostered by the users’ need to be more in control in a work
environment. For example, more than 60% would like to have an automatic light
control in their rooms and only 33% in their office. This attitude is also reflected
in the users’ attitude regarding the perceived market value for such a system.

6.2.5. Exploring the Attitudes of Expert Users

In our study, we found that the subjects who were more experienced in terms of
computer knowledge were significantly more interested in specifying a confidence
level threshold for proactive action (t(22) = 2.20, p < 0.05) and in controlling the
system when necessary (t(28) = 2.83, p < 0.01). The reduced number of degrees of
freedom for the first case is due to missing data.

The need to control the system correlates with the amount of knowledge users
hold about computers (r(28) = 0.48, p < 0.01): the higher their level of expertise,
the more in control they would like to be.

6.2.6. Qualitative Analysis

The questionnaire design enabled participants to provide comments when answer-
ing each of the Likert scale questions. These comments are summarised below.

When commenting about whether the proactive system should prompt before
carrying out an action or whether the system should simply carry out the action
automatically, participants commented that this should be task-dependent, given
the possible negative consequences related to the automatic actions, e.g. “fan blow-
ing papers”.

The option of having the system prompting for a short time and then not per-
forming the action is usually considered as having little value, particularly “if the
certainty level is high, it makes sense to let the system get on with it”.

One interesting comment made by a participant was as follows: “I don’t think
that the user of a washing machine is interested in knowing how the system works
out when to turn the water supply off, but knowing that there is a facility to cope
with half loads, i.e. use less water, is useful information”. This comment under-
lines the dichotomy between two types of user models: the structural model that
assumes that the user has internalised the structure of how the system works, and
the functional model that assumes that the user has internalised procedural knowl-
edge about how a system can be used. Users holding a functional model of an
intelligent control system are probably more inclined to accept its learning curve
and have a high tolerance to its errors. In fact, study findings suggest that par-
ticipants previously exposed to proactive systems are significantly more willing to
accept the system making wrong decisions (t(28) = 1.97, p < 0.05).

We believe that these findings indicate that the designers of systems such as the
IOS should anticipate a significant variance in user preferences for different system
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features, particularly scrutability and control. One way to successfully accommo-
date such a large range of user preferences consists of designing a system able to
tailor itself to each individual user. However, in practice, this may be difficult to
implement, given the richness and uniqueness characterising each individual user.
A possible way to approach this problem, open to future work, consists of identi-
fying groups of users which differ greatly in terms of their preferences for system
behaviour, i.e. scrutability and enabled control. Following such an approach could
lead designers to develop a range of different systems, each designed on the basis
of the requirements of a distinctive category of user.

7. Discussion and Lessons Learned

We would argue that our current work on the IOS represents one of the first
case studies of a truly proactive system: a system that combines context-awareness,
machine learning and support for scrutability. The following subsections describe
the issues explored and lessons learned from our research to date with the IOS.

7.1. benefits and drawbacks of deployment

From our experience in developing and deploying ubicomp/context-aware systems
we are of the strong opinion that real (albeit prototype) deployment is crucial to
developing insights and highlighting areas for further investigation which can all
too easily be missed as part of a purely paper study. However, the difficulty of
developing a prototype system that can run continuously 24/7 for many weeks,
if not months, should not be underestimated. The current system has undergone
numerous modifications in order to reach a level where the user interface and over-
all system reliability are at an acceptable level for deployment with nontechnical
users. Unforeseen problems can, of course, also occur, For example, the initial sys-
tem had been developed to turn on the fan but not to turn on a heater. How-
ever, a move to a new building brought cooler conditions causing a slight system
modification to control heaters also. However, on the positive side, deployment did
enable users to make explicit and meaningful choices. The layout of a user’s office
has a significant impact on how she may alter her preferences for the system’s
behaviour. For example, one of the authors has a preference for the IOS to turn
her office heater on without prompting, but she does request prompting before the
system turns on the fan (because she may have papers in front of the fan). How-
ever, another user of the system has these preferences reversed.

Furthermore, it has only been through actual deployment that we have come to
realise the importance of practical issues such as the need to deploy prototype sys-
tems that do not increase office clutter, or additional computer noise. It was also
through deployment that we realised the strong preference (amongst the technical
users involved in the study) for a system that supported touch screen based inter-
action.
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7.2. acknowledging the need for strong user benefit to ensure user
adoption

Following on from the arguments made in the previous section, we have also found
it crucial when asking users to deploy prototype systems in or around their offices
that they receive a genuine benefit from adopting the given technology. For exam-
ple, we experienced this as a key issue when asking work colleagues to cooper-
ate in the deployment of a collection of electronic office door displays (Cheverst
et al., 2003). With research such as this, it is critical that the cost of using the sys-
tem is not too high to outweigh perceived benefits in the short term. The learn-
ing approach employed by the IOS relies on the capture of events such as the user
turning on a fan, turning off a heater etc. It is simply not realistic to expect a user,
even one with a vested interest in the experiment, to go through the trouble of per-
forming two tasks in order to turn on a device, i.e. Task 1: turning on the fan and
then Task 2: pressing a button on a GUI in order to let the system record the fact
that she has just turned on the fan. This was the case with an earlier version of
the IOS; in order to reduce this cost we first tried to sense automatically (using
the sensor described in Section 4.1.3) when a device was turned on (thus removing
Task 2). However, this approach alone has some difficulties, because once the fan
was turned off manually, the system would not be able to turn on the fan (using
X10). To counter this problem, we developed a GUI for the system that enabled
the user to turn on the device using a GUI on a separate touch-sensitive display
(i.e., the one shown in Figure 7).

7.3. complexity vs. comprehensibility

There is an inherent conflict between the comprehensibility of a system and the
complexity of the algorithms used to generate the desired behaviour. A simple
approach may be easy to comprehend but may not produce the desired behaviour.
Conversely, a more complex approach achieving accurate results may not be easily
understood by the average user.

From our experience with the IOS, we feel that the use of fuzzy decision trees
offer a good compromise between complexity and comprehensibility. While the full
details of the low-level computations may be beyond an average user, the result-
ing fuzzy decision tree is reasonably easy to understand and most importantly
enables the user to scrutinise the underlying rules that the system has learnt and
which it will use to perform proactive activation of devices. Furthermore, unlike a
classical decision tree based on crisp cut-points, the fuzzy variant can generate (a
ranked list of) secondary reasons for a decision. In this way, it not only provides
more detail about why a particular decision was taken but it also does so using a
human conceptualisation, i.e. fuzzy categories. For example one can imagine think-
ing: “yeah it is a bit hot but still somewhat mild”.
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Figure 17. An early version of a (much disliked) modal dialog box for prompting the user.

7.4. interruption and user control

Uncontrollability and unpredictability are key factors responsible for the negative
and stressful impact caused by interruptions (Cohen, 1980). Our approach is to
reduce these negative effects by providing a user of the system with appropriate
levels of control and comprehensibility (thus helping her to better predict system
behaviour).

The IOS enables the user to choose whether to be informed before a system
proactive behaviour takes place. For example, Figure 8 shows the prompt displayed
by the system when the user has requested to be informed before her fan is turned
on. In effect these prompts can be viewed as interruptions to the user. Users can
control (over time) the extent to which these prompts can occur. For example, in
the current version of our system, as a user learns to increase her trust in the sys-
tem’s decisions, she may choose (using the check boxes shown in Figures 8) less
prompting by the system. By doing so, she is effectively negotiating the level of
interruption occurring (McFarlane and Latorella, 2002) and also sacrificing greater
control in order to permit more automatic behaviour (through the actuation of
devices) to occur.

The IOS also provides the user with information regarding its learnt behav-
iour. For example, Figure 8 shows the information (specifically the message “I
believe that you want to turn the fan off (confidence level: High)” presented to
the user when a rule to turn off the fan is triggered. Again, the provision of such
information can be viewed as a form of interruption. But the user may chose to
ignore this information or to act on it by, in this case, pressing the ‘OFF’ button.

An earlier version of the system used a significantly more disruptive approach
to prompting the user: a modal dialog box such as that shown in Figure 17, which
was designed to appear on the user’s primary desktop monitor. The change to a
less disruptive interface was made following user feedback from those running this
earlier version of the system.

In addition to providing prompts regarding the system’s learnt behaviour,
the IOS also attempts to promote comprehensibility (and thus reduce its
unpredictability) by supporting scrutability, i.e. enabling the user to access the rules
governing system behaviour. For example, Figure 8 illustrates how the user is given
the opportunity to scrutinise the currently triggered behaviour.
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8. Future Work

Our immediate future work is to deploy the system (or at least a variation of
it) into the offices of less technical users and also to move towards deployment
in a home environment for extended periods of use/study. It will be interesting
to observe whether there are significant differences to user acceptance of the sys-
tem in home and office environments, given the findings of the questionnaire-based
study. We hope that the availability of the software part of the IOS on the web will
also enable other groups to extend the system and perform their own deployments
and experimentation.

Furthermore, we want to extend the number of attributes captured by the
system. This will not only enable the system to reason on the basis of richer
information about the current state of the environment but it should also prove
beneficial in dealing with values fluctuating around a cut-point (as decisions will
not be based on a single attribute alone). We are also interested in incorporating
time-related factors such as the time of day, the day of the week and perhaps even
the time of year. These attributes will help to capture more accurately the patterns
of user behaviour, such as daily or seasonal routines.

9. Summary and Concluding Remarks

This article has described our exploration into the feasibility of utilising context
history with a fuzzy-decision-tree-based machine learning algorithm in order to
support personalised but comprehensible proactive behaviour in an office environ-
ment.

One key motivation for carrying out this research has been to explore both the
technical and human factors issues associated with a context-aware proactive sys-
tem such as the IOS. Consequently, a core element of our research has been to
explore issues of user control, comprehensibility and interruption. Comprehensibil-
ity in the IOS is supported by allowing the user to scrutinise the rules learnt by
the system and the context history used to generate the rules (if this level of detail
is requested by the user). Our questionnaire study revealed that in general partic-
ipants were keen to scrutinise behaviour in this way. Furthermore, users involved
in the study had a positive response to the concepts behind the IOS but clearly
expressed a desire for maintaining levels of control over the system’s proactive
behaviour.

By designing and deploying the Intelligent Office System we have achieved a
validation of the feasibility of collecting context history (using both ‘off the shelf ’
and tailored sensing devices) and utilising this context history in order to learn
patterns of user behaviour which can, in turn, be used to drive proactive behav-
iour (e.g. turning on a fan in the user’s office).

We strongly believe that through the actual deployment of a working system we
have managed to obtain far greater confidence in our understanding of the tech-
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nical and human factors issues than would have been achievable had only partial
system implementation and Wizard of Oz based studies taken place.
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