
Deploy Spontaneously: Supporting End-Users in Building and
Enhancing a Smart Home

Fahim Kawsar, Tatsuo Nakajima
Department of Computer Science
Waseda University, Tokyo, Japan

{fahim,tatsuo}@dcl.info.waseda.ac.jp

Kaori Fujinami
Department of Computer, Information and Communication Sciences
Tokyo University of Agriculture and Technology, Tokyo, Japan

fujinami@cc.tuat.ac.jp

ABSTRACT
This paper explores system issues for involving end users in
constructing and enhancing a smart home. In support of this
involvement we present an infrastructure and a tangible de-
ployment tool. Active participation of users is essential in
a domestic environment as it offers simplicity, greater user-
centric control, lower deployment costs and better support
for personalization. Our proposed infrastructure provides
the foundation for end user deployment utilizing a loosely
coupled framework to represent an artefact and its augmented
functionalities. Pervasive applications are built independently
and are expressed as a collection of functional tasks. A run-
time component, FedNet maps these tasks to correspond-
ing service provider artefacts. The tangible deployment tool
uses FedNet and allows end users to deploy and control arte-
facts and applications only by manipulatingRFID cards. Pri-
mary advantages of our approach are two-fold. Firstly, it
allows end users to deploy ubicomp systems easily in a Do-
it-Yourself fashion. Secondly, it allows developers to write
applications and to build augmented artefacts in a generic
way regardless of the constraints of the target environment.
We describe an implemented prototype and illustrate its fea-
sibility in a real life deployment session by the end users.
Our study shows that the end users might be involved in
deploying future ubicomp systems if appropriate tools and
supporting infrastructure are provided.
Categories and Subject Descriptors: D.2.11 [Software
Engineering]: Software Architectures
Keywords:AugmentedArtefact, Pervasive Application, Sys-
tem Infrastructure, End User Deployment

INTRODUCTION
One of the consequences of the convergence of ubicomp
technologies is the integration of processors and sensors into
everyday objects resulting in the emergence of innovative
pervasive applications. We envision that this trend will even-
tually bring these applications into our home. A pervasive
application usually involves sensors, instrumented everyday

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UbiComp’08, September 21-24, 2008, Seoul, Korea.
Copyright 2008 ACM 978-1-60558-136-1/08/09...$5.00.

objects (augmented artefacts), mobile devices, displays, etc.
Ideally, these applications should be similar to the home ap-
pliances e.g., a table lamp, a dish washer, a TV etc. and
should be easy to setup, adaptive to users’ needs, and inter-
changeable with new models. A user may buy one or mul-
tiple physical artefacts and applications for them and should
be able to install them just like other home appliances. In
addition, one can incrementally enhance the artefact func-
tionalities by upgrading its features or installing new appli-
cations e.g., consider a hypothetical table lamp application
that proactively turns the lamp on and adjusts its brightness
adapting ambient room lighting. A user can initially buy a
regular lamp, and few weeks later he/she can buy a light sen-
sor, attach it to the lamp and download this application into
the lamp to make it proactive. There are several advantages
in involving end users to form a smart home in this fash-
ion as observed by Beckmann and his colleagues including
less cost, greater user-centric control, more acceptance, bet-
ter personalization and frequent upgrade support [3].
Involving end users in the deployment process requires the
development of plug and play artefacts that are deployable
in a Do-It-Yourself (DIY) fashion. Similarly pervasive appli-
cations should be built in such a way that they can use any
compatible instrumented artefact. In addition, the installa-
tion process of these applications has to be seamless with-
out complex configuration and administration. These issues
raise two requirements: i) a general infrastructure for build-
ing plug and play augmented artefacts and generic pervasive
applications and ii) a simple, easy to use tool that allows end
users to deploy the artefacts and the applications. Although
these two requirements (infrastructure and user interface) are
contrasting, it is hard to draw a clear distinction because both
are tightly coupled and complement each other for support-
ing end user deployment. That is, without having a proper
infrastructure the user interface will be inadequate to support
the deployment process and vice versa.
To address these requirements, we present an infrastructure
that provides the foundation for end user deployment us-
ing an artefact framework. This framework represents an
instrumented artefact by encapsulating its augmented func-
tionalities (e.g., proactivity of the table lamp) in one or mul-
tiple service profiles atop a core and allows additions of pro-
files incrementally. Applications in our approach are repre-
sented as a collection of implementation independent func-
tional tasks. These tasks are atomic actions that represent
the artefacts’ services, e.g., “sense current light sensitivity”,
“turn on the lamp”, etc. An infrastructure component Fed-

282

Net, manages these applications and artefacts and maps the
task specifications of the applications to the underlying arte-
facts’ services by matching respective documents (that ex-
press the applications and the artefacts). A tangible deploy-
ment tool uses FedNet and supports the deployment activity.
Each application and artefact comes with an RFID card that
end users manipulate to install and control them. The combi-
nation of the infrastructure and the deployment tool enables
end users to build and enhance a smart home. Consequently,
the contributions of this paper are two-fold: i) an architec-
ture that provides the foundation for involving end users in
the deployment process, and ii) a tangible deployment tool
that supports the end user deployment activity.
In the next section we justify end users involvement in the
deployment process. Then, we present the design aspects,
followed by the technical detail of our approach. Next, we
proceed to the feasibility of our solution by using real life
deployment examples. Although, the end user experiment
positively evaluated our system’s support for the deployment
activity, it revealed some usability issues. We report these
findings along with the experiment descriptions. Finally, we
position our research with respect to the related work and
conclude the paper.

INVOLVEMENT OF END USERS
The rapid proliferation of ubicomp technologies makes it es-
sential to understand how to place and manage ubicomp sys-
tems into the environment. This is particularly important for
the home where the dwellers have a greater control. One es-
sential property of our home is its evolutionary nature and
receptibility to continual change [23]. We incrementally or-
ganize our homes with furniture and appliances according to
our preferences and styles. Previous studies have shown how
end users continuously reconfigure their homes and tech-
nologies within it to meet their demands [21, 23]. Edwards
et al. observed that the networked home of the future will
emerge in a piecemeal fashion [10]. To support the evolu-
tionary nature of our homes it is essential that ubicomp sys-
tems support the incremental deployment. Ideally, deploy-
ment should be carried out by the end users. The end users
have in-depth knowledge of the structure of their home and
their activities, resulting in a better understanding of where
and which physical artefact and application to deploy. Fur-
thermore, involving end users in the process leads to higher
acceptability and a greater feeling of having control due to
their active participations. It also reduces deployment cost
as professional assistance is not needed. Considering these
factors, we reckon that the end users will be deploying ubi-
comp systems at their home by themselves in the future. The
work presented in this paper supports this notion.

DESIGN ISSUES
A central issue to support end user deployment is a suitable
infrastructure that enables isolated development of plug an
play artefacts and applications. To date several infrastruc-
tures are proposed in the ubicomp literature. However, these
systems’ supports are not compelling to enable end users in
deploying smart artefacts and applications. Consider, Figure
1 where four different use cases for a ubicomp environment
are shown. In case 1, artefacts are stand-alone providing

Figure 1. Different use cases for ubicomp applications

Figure 2. A single artefact with multiple roles and multiple artefacts with
similar roles

a single or multiple built-in functions without any applica-
tions. Whereas in cases 2-4 three different modalities of ap-
plication association are shown. Although the latter cases
are supported by existing infrastructure [6,14,24,25] by pro-
viding a wrapper that is tightly glued with the rest of the in-
frastructure, but they have no clean support in case 1. Arte-
facts are inherently dependent on the infrastructure and can-
not run in a stand alone mode. Also, to use augmented arte-
facts, applications are bound to follow the infrastructure se-
mantics. These constraints limit the development of artefact
and applications independent to infrastructure which makes
it difficult for casual users to deploy ubicomp systems.
Another interesting aspect is the augmentation modalities
of the artefacts. Augmentations depend on the designer’s
intuition and it is hard to confine the augmentation scope.
Consider Figure 2, depicting two ideal situations, a) a sin-
gle everyday artefact capable of playing multiple functional
roles and b) multiple artefacts sharing an identical functional
role. In Figure 2(a) we have a smart table providing two
supplementary functions: an ambient display and a proxim-
ity detector. In Figure 2(b) we have a mirror whose display
functionality can be triggered by any of the three augmented
artefacts, e.g., a toothbrush, a comb or a razor. The suitable
augmentation of these artefacts depends on the underpinned
scenario, regardless of the multiple functionalities that can
be afforded. Existing infrastructures provide a widget no-
tion to encapsulate the artefacts [6]. However, such widgets
are not capable of hosting augmented features in a plug and
play manner. Adding a new feature to an existing artefact
requires regeneration of the widget. This limits an end user
to augment features of an existing artefact thus hindering the
DIY support.
The final aspect related to the end user deployment is the
tool to install artefacts, applications and enhance their func-
tionalities gradually. Several researchers looked at the sim-
ple rule based authoring tool and programming by examples
for the end users to configure an applications’ proactive be-

283

haviors like [7, 8, 22]. However, these tools are not suitable
for casual users with no technical background. As previ-
ous studies have shown, the deployment process has to be
very simple with minimal configuration complexities [1, 3].
Also, the process should resemble the current practices as
closely as possible with which the end users are familiar,
e.g., installing a home appliance like a washing machine, a
microwave etc. These observations leads us to the following
design decisions:
1. DIY Instrumented Artefacts: Artefacts should be reus-
able and augmented features should not be tightly cou-
pled with the artefact. We need to package the artefact
in a generic executable so that the end users can deploy
them. We have designed a loosely coupled framework
to represent an artefact and its augmented functionalities.
Each augmented functionality is termed as a profile in our
framework and profiles can be added to an artefact incre-
mentally. The separation of artefacts and profiles enables
DIY support, e.g., an artefact can be instrumented with
any suitable profile.

2. Infrastructure Independent Application: Applications
should be developed considering the functionalities only.
To make an application independent of the infrastructure,
it is imperative to know an application’s runtime require-
ment ahead of the execution. Furthermore, the applica-
tion needs a generic access mechanism to interact with
the environment. We have addressed these challenges by
representing an application as a collection of functional
tasks written in a task description file and allowing an
application to access the artefact services using popular
web techniques (SOAP for push and RSS Feed for pull).
We have opted to use SOAP/RSS over other event driven
models since it makes an application less dependent on
the infrastructure as the developers do not need to use the
infrastructure specific APIs.

3. Spontaneous Federation: For creating a spontaneous fed-
eration among the applications and the artefacts, FedNet
provides the runtime intermediation as shown in Figure 3.
It is essential to understand the semantics of the movable
data pattern ahead of the execution for such spontaneous
federation. FedNet analyzes the task description file to ex-
tract the service requirements and thenmaps these tasks to
underlying service provider artefacts by matching artefact
description files. FedNet then assigns a generic interme-
diation component to the application that allows the ap-
plication to access the services of the artefacts.

4. Tangible End User Deployment Tool: The DIY deploy-
ment process of a ubicomp system requires two tasks: i)
installing a ready-to-run instrumented artefact or attach-
ing sensors or actuators to an existing artefact, and ii) in-
stalling applications and associating the application with
an artefact when necessary. We have adopted a tangible
interface for supporting these tasks. Each artefact, pro-
file or application is disseminated in a generic binary and
comes with a corresponding RFID card. The end users
can install/uninstall, run/stop artefacts and applications by
using these cards and the deployment tool. Furthermore,
they can associate a profile or an application to a specific
artefact.

Figure 3. Basic workflow of our approach

SYSTEM DETAIL
In this section, we present the artefact framework followed
by the task centric application framework. Then, we show
how FedNet utilizes these frameworks to create a sponta-
neous association between the artefacts and the applications.
The frameworks and FedNet are implemented in Java.
Artefact Framework
Artefact framework provides a layered architecture where
basic artefact functionalities are combined in a core compo-
nent. Additional augmented features can be added as plug-
ins into the core. Each augmented feature is called a profile
in our approach. These profiles are artefact independent and
represent a generic service, For example: sensing room tem-
perature could be one profile, and multiple artefacts (e.g., a
window, an air-conditioner, etc.) can be augmented with a
thermometer for supporting this profile.
Internal Architecture of Artefact Framework
The internal architecture of the artefact framework is shown
in Figure 4 and consists of the following:
1. Core Component: Typically instrumented artefacts have
some common characteristics e.g., capable of communi-
cation [4,26], provides perceptual feedback, possesses mem-
ory etc. The core component of the artefact framework
encapsulates all these functionalities. The communica-
tion module facilitates communication support and encap-
sulates the transport layer where as the discovery module
allows service advertisement. The notification module en-
ables the rest of the modules to indicate their status. The
artefact memory contains property data, profile descrip-
tions, and other temporal data. The client handler is the
request broker for services and delegates the external re-
quests to specific profiles. Finally, the profile repository
hosts the array of profiles. The profile repository has dy-
namic class loaders to load the profiles dynamically when
requested. The entire core is packaged in an executable
binary and runs independently.

2. Profile: Each profile represents a specific functionality
and implements the underlying logic of the functions, e.g.,
providing context by analyzing the attached sensors’ data
(e.g., room temperature) or actuating an action by chang-
ing the artefacts’ state (e.g., increasing the lamp bright-
ness etc.). Each profile is of type sensor or actuator and
has a profile handler, a template to plug-in device code and
context calculation or service actuation logic. The profile
handler has an abstraction layer that hides the heterogene-
ity of the underlying devices.

284

Figure 4. Architecture of Artefact Framework

Figure 5. Artefact Description File for a Mirror with Proximity Profile

Documents to represent Artefacts
The artefact framework’s core is packaged as a ready-to-run
binary with a description document called Artefact Descrip-
tion File (ADF) as shown in Figure 5 for a mirror artefact
with a Proximity Profile1. Profiles are packaged as plug-ins
with a Profile Description File (PDF) (Figure 6) that run atop
the core. The PDF specifies the data semantics of the corre-
sponding profile and contains a detector or an actuator node
based on the profile type. The sensor profile’s description
follows the specification of the Sensor Modeling Language
(SensorML) [20] (Figure 6(a)). The primary strengths of
SensorML are its soft typed attribute, reference frame and
parameters, with which the semantics of different sensor data
platforms can easily be understood and interchanged. For
an actuator profile2, our custom designed XML based Arte-
fact Control Language (ACL) is used (Figure 6(b)) where
the state attribute is used to abstract the operational states of
the artefacts. It contains the input parameters to change the
states along with their data type. PDF also contains a qual-
ity of service(QoS) block which specifies profile’s quality.
Furthermore, these files contain an installation-instruction
block that provides hardware installation guidelines.

Task-Centric Application Framework
An application is expressed as a collection of functional tasks
independent of the implementation. This specification al-
lows FedNet to map these tasks to respective service provider
artefacts. An application developer can follow any library
and implementation language to code the execution logic.
The two things necessary to work in a FedNet environment
are the task specification, and the generic access mechanism.
Any application is composed of several functional tasks, i.e.,
atomic actions. In ubicomp applications, these atomic ac-
tions may be: “turn the air-conditioner on”, “sense the prox-
imity of an object” etc. An application is expressed as a col-
lection of such functional tasks in a Task Description File
1Proximity Profile’s sole purpose is to recognize the presence of an object
in front of the artefact.
2Please note that the protocol to handle the underlying device is imple-
mented in the profile implementation.

Figure 6. (a)Profile Description File for Proximity Profile, SensorML is
used in the detector node. (b) Artefact Control Language is used for
actuator profile

(TDF). Each task specifies the respective profiles it needs to
accomplish its goal. Figure 7 shows part of the task descrip-
tion file for a smart display application. Each task contains
Quality of Service (QoS) requirements for the target profiles.
The second requirement for an application is to use generic
web protocols to access artefact services. During applica-
tion installation in FedNet, an access point is assigned to
the application. An application needs to access this point
to send requests and receive responses from the underlying
artefacts. In our current implementation the application uses
a SOAP request for polling or sending an actuation request
to the artefacts. For continuous polling (i.e., subscription),
auto discoverable RSS feeds are used. During the applica-
tion’s instantiation time, the required physical artefacts data
semantics (detector and actuator nodes of the Profile De-
scription File) are send to the application by FedNet, to let
the application prepare for the moveable data accordingly.
In the current implementation, we have provided a simple
library in Java comprised of a SOAP Client and Auto Dis-
coverable RSS Parser for the application developer.

FedNet System
FedNet provides the runtime association between the appli-
cations and the artefacts by utilizing respective documents.
FedNet is composed of four components (Figure 8).

285

Figure 7. Task Description File (partly) for a smart display application

1. Application Repository hosts all the applications that run
on FedNet. During an application’s deployment, the bi-
nary executable and the Task Description File (TDF) are
submitted to this repository. FedNet Core generates the an
access point for the application and updates the respective
TDF by dynamically injecting the identity of the corre-
sponding access point as shown in Figure 7.

2. Artefact Repositorymanages all the artefacts running in
FedNet environment. During artefacts’ deployment, the
executable binary implementing the artefact framework
and the Artefact Description File (ADF) are submitted to
this repository. When a profile is added to an artefact, the
profile information is dynamically injected into ADF as
shown in Figure 5 and the respective profile is attached to
the artefact.

3. FedNet Core provides the foundation for the runtime fed-
eration. When an application is deployed the task specifi-
cation is extracted from the application repository by the
FedNet Core. It analyzes the task list by querying the arte-
fact repository and generates an appropriate template of
the federation and attaches it into a generic access point
component for that application. When an application is
launched, the access point is instantiated and the respec-
tive template is filled by the actual artefact available in the
environment right at that moment thus forming a sponta-
neous federation.

4. Access Point represents the physical environment needed
by an application. Since each application’s artefact re-
quirement is different and each application might not be
running all the time, FedNet assigns a unique access point
for each application; meaningmultiple federations of arte-
facts can co-exist in the environment. Simultaneously,
each artefact can participate in multiple federations. When
an application is launched, the access point sends the fed-
erated artefacts data semantics, i.e., SensorML and ACL
to the application. This allows an application to know
the semantics of movable data in advance. From then
on, the application delegates all its requests to the access
point which in turn forwards them to the specific artefact.
The artefacts’ responses to these requests by providing
their profile outputs either by pushing the environment
state (actuation) or pulling the environment states (sens-
ing) back to the access point that are fed to the application.

Figure 8. Architecture of FedNet

DEPLOYMENT TOOL FOR END USERS
To support end users in the deployment process, a tool is
needed to install the artefacts and applications into the cor-
responding repositories, and to add profile plug-ins into the
artefacts. Furthermore, this tool should enable the end users
to control these artefacts and applications. We provide a tan-
gible interaction tool for supporting these tasks. There are
several user-centric design rationales behind our decision.
1. Tangible Interface: In the earlier stage of this work we
provided a web based GUI tool for the deployment pro-
cess. However, our pilot user study revealed several us-
ability problems of such GUI as it contradicts end users’
conceptualmodel of installing home appliances. Although,
the deployments tasks were identical to regular desktop
computing, e.g., software installation, the end users found
it difficult to comprehend and suggested that the the pro-
cess has to be more mechanical and tangible. Also, the
GUI suffered from fragmentation of attention as users had
to switch back and forth from GUI to physical artefact.
Considering their suggestionswe have designed a tangible
interface for the deployment purpose. RFID (representing
artefacts, application and profiles) and RFID Reader with
touch buttons are provided for end users’ interaction.

2. Contextual Feedback and Guidelines: It is necessary to
provide feedback of users’ actions and to guide the users
with proactive suggestions [1]. We have provided visual
(blinking LEDs) and sound feedback along with speech
guidelines. These are contextual, i.e. the possible next
steps are provided based on the user’s latest activity and
the state of the system.

3. Semantic Mapping of User Actions: To support dis-
tributed deployment with a centralized tool we need to
identify which action is for which entity (artefact, applica-
tion and profiles) i.e., we need a selection phase followed
by the action phase. We have adopted RFID cards for the
selection phase thus resolving the identity and provided
touch buttons to resolve the actions.

Hardware
The deployment tool is built with an RFID reader, 3 touch
buttons and 3 LEDs (Figure 9(d)). The touch buttons and
LEDs are connected to an interface kit. The whole unit has
a USB interface and can be connected to a regular PC/laptop
that provides the power, audio output and controls the unit.

286

Figure 9. (a-c) Deployment Steps (d)End User Deployment Tool

Interaction Mechanism
We have mentioned that each application, artefact and pro-
file is disseminated as an executable binary. We assume that
each of these is packaged with an RFID card that embeds a
remote URL fromwhere the binaries can be collected. There
are six functions (organized in 3 groups) that the end users
can perform using these cards and the deployment tool.
• Install/Uninstall an Artefact/Application: These functions
can be performed by placing the RFID card of the arte-
fact/application and then pressing the green button (Fig-
ure 9(a)). During installation, the binary is downloaded
from the remote URL embedded in the RFID3.

• Runing/Closing an Artefact/Application: These are per-
formed by placing the RFID card of the artefact/application
and then pressing the red button (Figure 9(b)). Although
most of the pervasive applications are assumed to run con-
tinuously, we have provided these explicit controlling func-
tionalities to the end users since there is no secondary user
interface in our system. Thus if a user needs to stop an ap-
plication or artefact’s functionality for some reason (e.g.,
going for a vacation), they can do so using these functions.

• Associating/Removing a Profile/Application: These func-
tions are needed to associate a profile or an application to
a specific artefact. Note that the applications that are not
associated with any specific artefact can be installed fol-
lowing Figure 9(a). However, for the applications and pro-
files that are specific to one artefact an association phase
is needed. This is done by placing the target artefact card
first into the reader, touching the yellow button and then
placing the newly installable profile’s or application’s card
into the reader (Figure 9(c)). If a profile description file
contains hardware installation instructions (Figure 6), the
tool provides audio guidelines to support the installation.

Since each of the RFID cards represents the corresponding
artefact or applications, these cards are used for controlling
(running/closing) the artefacts and applications after the de-
ployment process is finished.
3In the current implementation, RFID contains a unique number which is
resolved by consulting a secondary file to extract the binary URL.

EVALUATION
There are two aspects of evaluation of our approach: one is
from the system’s perspective and the other is from the end
users’ perspective to evaluate the usability of the deploy-
ment tool. We have approached the first aspect by follow-
ing the guidelines of Edwards et al. [9]. A couple of proof-
of-concept ubicomp systems that include multiple artefacts,
profiles and application are re-developed following FedNet’s
approach and are provided to end users for real time deploy-
ment. This deployment task is supported by the tangible de-
ployment tool. So the end users could evaluate its usability
and thus complementing the second aspect of our evaluation.
In this section, first we present the two proof-of-concept sys-
tems and then present the user trial.
Two Sample Ubicomp Systems
The first system is composed of the following:
• Mirror Artefact: A regular display is augmented with an
acrylic mirror panel (Figure 10(a,f)). The acrylic panel
is attached in front of the display, and only bright col-
ors from the display can penetrate the panel. The mir-
ror display has an extension board for attaching sensors.
An artefact framework instance (executable binary in an
RFID Card) represents the mirror.
• AwareMirror Application: This application runs in a mir-
ror and displays some up-to-date information [12]. The
application’s default functionality can be enhanced if the
mirror is augmented with Proximity and Bi-state Interac-
tion profile. The former enables the application to show
information only when someone is in front of it and the
latter enables the users to interact with it, e.g., to know
detail information. This application adheres FedNet se-
mantics, e.g., expresses tasks in a description file and ac-
cess the artefacts using web techniques. The application
comes in an RFID card (Figure 10(g)).

The second system is composed of the following:
• Mirror Artefact: Same as the above system.
• Toothbrush Artefact: A toothbrush (Figure 10(b,f)) is aug-
mented with a wireless 3D accelerometer sensor. It can
provide its state of use information and is represented by
an instance (in an RFID) of the artefact framework with a
state-of-use4 profile plugged into it.
• Virtual Aquarium Application: This application has the
objective of improving users dental hygiene by promot-
ing correct toothbrushing practices [19]. The application
turns the mirror artefact into a simulated aquarium. Fish
living in the aquarium are affected by the users tooth-
brushing activity if a toothbrush is available. The applica-
tion’s default functionality can be enhanced if the mirror
is augmented with Proximity profile that enables the ap-
plication to show the aquarium only when some one is in
front of it. This application adheres FedNet semantics and
comes in an RFID card (Figure 10(g)).

Profiles
Both systems’ functionality can be enhanced by adding one
or multiple profiles into the mirror artefact. These are:
4The sole purpose of the state-of-use profile is to provide the usage state,
e.g., toothbrush is in use, etc.

287

Figure 10. Artefact, Profiles and Applications with their corresponding
RFID cards, manuals and hardware

• Proximity Profile: This profile’s purpose is to recognize
the presence of an entity in front of its host artefact. This
functionality can be achieved in multiple ways, i.e., us-
ing an infra-red sensor, a motion sensor, a camera, etc.
We have provided three implementations for this profile
(Figure 10(d)) using infra-red sensor, floor sensor (Figure
10(c)) and motion sensor respectively.
• Bi-State Interaction Profile: This profile enables a user to
interact with its host artefact. It provides a simple two-
state input facility suitable for applications that needs bi-
nary input. There are multiple instrument choices for the
profile implementation and we have provided three imple-
mentations (Figure 10(e)): one with a touch sensor, one
with a force sensor and the last one with a slider.

Each profile binary comes in an RFID card with associated
hardware.

FedNet Infrastructure and the deployment Tool
The FedNet infrastructure runs in a laptop computer and the
deployment tool is connected to it (Figure 10(h)).

Evaluation Methodology
Each of these applications, artefacts and profiles are devel-
oped following our architecture. Also, the same profile is
built with multiple sensors. The successful deployment and
incremental integration of these components by the end users
will highlight the core features of our system and will re-
veal the usability of overall process. Accordingly, we have
conducted a user study to understand the feasibility of our
approach and to explore avenues for further research.

Participants
We invited 25 individuals (14 Male, 11 Female, age range
22-39) with moderate computing skills (familiar with web,
email, and basic office applications) through an open in-
vitation in a social networking site. 23 of them did not
have any engineering background. Users were screened such
that their professions were fairly disperse (e.g., law students,
house wives, office workers, etc.) to balance the skill level.
Study Sessions
Each study session was held for 90 minutes and included
four phases. In phase one we introduced the concept and pre-
sented a tutorial on the deployment tool. In phase two, they

Figure 11. Participants consulting manuals, deploying artefacts, in-
stalling applications, adding profiles, etc.

were given 10 minutes to get familiar with the tools. Next,
in phase three, they were given the following four tasks:
• Task 1: Deploying and and running the mirror.
• Task 2: Installing and running either AwareMirror or Vir-
tual Aquarium application.
• Task 3: Adding the Proximity Profile5 into the mirror by
selecting one of the three implementations if the user se-
lected AwareMirror application or adding the toothbrush
artefact if the user selected Virtual Aquarium application.
This task ends with running the artefact and the applica-
tion again.
• Task 4: Adding the bi-state interaction profile into the
mirror by selecting one of the three implementations if
the user selected AwareMirror application or Adding the
Proximity Profile into the mirror by selecting one of the
three implementations if the user selected Virtual Aquar-
ium application. This task also ends with running the arte-
facts and the application again.

Finally in phase four, we had a questionnaire and in-depth
follow-up interview session. The questionnaire contained
14 statements structured with a 5-item Likert scale to in-
dicate their level of agreement or disagreement. Question
1-10 were designed following the System Usability Scale
(SUS) [5] and the remaining four questions regarding the
complexities of each tasks 6. Following the questionnaire,
we interviewed users to gain further insight into their assess-
ments. Each session was video taped for later analysis.

Evaluation Results
Figure 11 shows some snapshots of the experiment sessions.
System Performance: FedNet and the target systems pro-
vided a stable performance in all the sessions and the end
users’ activities were properly converted into system events
accordingly. We consider, the flawless deployment and the
successful utilization of the two ubicomp systems evaluate
the system aspects of our approach qualitatively.
1. Plug and Play DIY Artefact: The mirror artefact was de-
ployed by the participants and its functionality was ex-
tended by attaching a couple of profiles (with multiple
sensor choices) to enhance applications features. Regard-
less of the sensor type, profiles were seamlessly added
into the artefact framework. Furthermore, the order of
profile addition had no effect on the deployment process.
So participants pickedwhatever profile they felt like adding.
This highlights the capacity of our artefact framework for

5The profile hardware installation requires attaching the sensor to the mirror
using double sided adhesive tape and connecting the sensor cable to the
interface board located in the backside of the mirror. For the floor sensor,
hardware installation was not needed except for placing the floor mat.
6Likert scale was normalized to complexity levels.

288

Figure 12. Average time taken and average complexities for completing
experiment tasks

hostingmultiple profiles implementing different device in-
terfaces. The combination of these are important for en-
abling the DIY support for the end users.

2. Infrastructure Independencyand SpontaneousFederation:
Both the artefacts and applications were expressed in high
level descriptive documents and disseminated as executable
binaries independent of the FedNet infrastructure. This
allowed the end users to install them easily. FedNet pro-
vided the runtime association enabling applications to use
the artefacts and to switch to respective advanced modes
when new profiles were added. For the end users, these
mechanisms were completely transparent as they could
only see the effect of their actions. This highlights the
simplicity and power of our approach to involve end users
in the deployment process.

End Users’ Performance: There were 100 tasks in total,
four for each participant. All participants successfully fin-
ished the assigned tasks, though 6 participants needed active
support in the early stages, primarily because of the miscon-
ception of the deployment process (explained later). On an
average 16 minutes were required for the third phase (ac-
complishing four tasks cumulatively including the intervals
between the tasks). Figure 12 shows the time (Figure 12(a))
required for each task type and the corresponding complex-
ity (Figure 12(b)). Task type 1, 2, and 4 required fairly little
time (1-4 minutes) since they consist of 2 step interaction
(Figure 9(a,b)). However, artefact addition time was slightly
higher because of the task order. Since, every participants’
first task was to add an artefact, it required a slightly more
time. The end users also found these tasks easy with an av-
erage complexity of 1.2 out of 5.0 for the task type of 1, 2
and 4. The profile addition task took maximum time (4-9
Minutes) where a large portion was spent for the hardware
installation. Moreover, 8 participants made mistake in the
association step (Figure 9(c)) e.g., placing the artefact card
later than the profile card onto the card reader or not plac-
ing the artefact card at all. However, the deployment tool
rejected these interactions and suggested the correct steps.
This allowed the end users to accomplish the task without
secondary assistance. These factors also impacted the pro-
file addition task’s complexity (average: 3) as shown in Fig-
ure 12(b). All participants have shown progress in repeat-
ing tasks and on an average they required 28.3% less time
in redundant activities, e.g., when adding the second profile
plugin, attaching hardware, etc. This indicates the fast learn-
ability of the deployment process.

Subjective Results of End Users Feedback: The compos-
ite SUS score was 79.8 out of 100 (Standard Deviation: 11.7,
Max: 91.2, Min: 62.7) regarding the overall usability of the
deployment tool and the process. We consider these values
are quite promising. Moreover, the individual frequency of
the acceptance statement in SUS: “I would like to have this
system if it were available” (Strongly Agree: N=17, Some-
what Agree: N=5) suggests users positive response regard-
ing the acceptance of the overall approach.
Implications: Later interviewswith the participants revealed
several interesting aspects regarding their understanding and
qualitative assessments of the entire process.
1. Concept is difficult to comprehend: The notion of arte-
fact profile and application were difficult for the end users
to comprehend and differentiate. For them the artefact
profile and the application were the same. One participant
commented “I did not get this profile thingy, is not it an
application for the artefact? It’s a bit confusing, what is
the difference between profile and application?.”Another
participant remarked “I understand that profiles are arte-
fact features, but since the installation process is same,
it is hard to differentiate the role of the artefacts, pro-
files, and applications. May be the profile addition button
should be at the other end so that we know it has a differ-
ent purpose.” They also had difficulties in understanding
what a profile is, as they associated the term profile with
someone’s background or record. So, they could not cor-
relate how a physical object could have multiple profiles,
which also affected the performance of adding profiles as
shown in Figure 12 (a,b). These facts imply that, our cur-
rent notions are not self explanatory to end users and we
need to provide a more comprehensive way of expressing
these concepts. Also, as one of the above quotes pointed
out, the orientation and placement of the interaction but-
ton for extending artefact feature should be different than
installation buttons. We are in the process of addressing
these concerns.

2. Different packaging is preferred over DIY: Several par-
ticipants mentioned that they can buy a product with dif-
ferent functional granularity according to their preferences.
one articulated participant pointed out “Why don’t you
make different versions of this mirror with installed sen-
sors and applications, then I can just go and buy what-
ever I need rather than trying to figure out where to put
which sensor.” She goes on saying “I would like to have
this kind of cool stuff in my home but perhaps I would
ask my boyfriend to install it for me.” 7 participants had
similar view points. They concurred that the augmented
artefact should be pre packaged, for example: one mirror
could be packaged with a proximity profile and another
with both profiles, etc. In this case they have the flexibil-
ity to buy different packages. Although, they agreed that
the DIY approach is fun, interesting and inexpensive, but
it limits the acceptability of the product to a mass pop-
ulation. One housewife remarked “My husband would
love to play with your mirror, but I don’t know how of-
ten I will do this.” These views suggest that, to make aug-
mented artefacts available to a larger user base, packaging
with variant options are needed. The incremental DIY ap-
proach can further extrapolate the packaging scheme.

289

3. Familiarity with sensors is crucial: We have provided
multiple sensor implementations for the same profile. We
have found that different participants have picked different
sensors. For proximity profile infra-red sensor was picked
17 times, the motion sensor 7 times and the floor sensor
1 time. For the bi-state interaction profile, the touch sen-
sor was picked 21 times, and both slider and force sen-
sor were picked 2 times each. The end users pointed out
that their familiarities with the infra-red,motion and touch
sensors in everyday life (e.g., in washroom faucet, mag-
netic door, garage, touch screen etc.) influenced their se-
lection, since it was easy for them to understand how the
sensors work and how to interact with them. Also do-
mestic concerns were highlighted by a few participants.
Most of them rejected the floor sensor since they found
it big, and problematic while cleaning the floor. Simi-
larly, they mentioned that the slider’s sharp edge might
harm their kids (3 housewives mentioned it). Moreover,
since they knew what the sensor does, they revealed that
it would be very simple for them to deactivate it. The
latter findings actually confirms what Beckmann et. al.
concurred about domestic concern and greater feelings of
control [3]. These factors imply that the artefacts and the
profiles should use the sensors that are common in our ev-
eryday life to involve end users in the deployment process.

4. Tangible interface has potential: We mentioned that in
our pilot study we used GUI for the deployment process,
which failed to attract users. They could not relate such
GUI based deployment process with installing other home
appliances. However, most of the users found the tangi-
ble tool familiar and user friendly. One user who partici-
pated in both the studies commented “I like this tool be-
cause it gives me the feeling of installing a physical thing,
this touching, pressing are something I am familiar with,
for example using my TV or washing machine, its simple
and more user friendly.” Similar comments were received
from other participants too where they emphasize that tan-
gible interaction for household appliances is more famil-
iar and suitable to them. Considering their projections,
we envisage that tangible interface might be a potential
candidate for deploying ubicomp technologies.

RELATED WORK
Involving end users in the deployment process relies on aug-
mented artefacts, device integration technologies and end
user tools. We look at the related work in these areas.

Augmented Artefacts
One of the very first prototypes of smart object was Me-
diacup [4] where a regular coffee cup was instrumented to
provide its contextual state infromation. Although the Me-
diacup project and its succeeding SmartIts [14] provide solid
insight into the augmentation of physical artefacts with sens-
ing and processing, they did not provide any generic repre-
sentation model that can make them usable with any gen-
eral purpose applications. Kohtake and his group introduced
Smart Furniture and u-Textures to build custom furniture
[17], however their approaches are also closed and tightly
coupled with their underlying scenarios. The artefact frame-
work presented in this paper takes a generic approach and

uses a service profile based framework to represent the in-
strumented artefacts in a scenario independent way thus al-
lowing any applications to utilize them.

Device Integration Technologies
To date several methods have been proposed to address de-
vice integration mechanism. One approach is interface and
protocol standardization as attempted by Jini7 and UPnP8
respectively. Jini describes devices using interface descrip-
tion and language APIs allowing applications to utilize those
interfaces where as UPnP attempts to standardize protocols
to allow devices to intercommunicate seamlessly. These in-
frastructures focus primarily on the developers rather than
the eventual users, consequently their support to enable in-
cremental deployment by the end users is limited. For ex-
ample, it is hard to add features in an existing artefact and
using that feature immediately in the application with these
infrastructures. Patch Panel [2] is a programming tool that
provides a generic set of mechanisms for translating incom-
ing events to outgoing events using EventHeap [16] com-
munication platform. It allows new applications to leverage
the services of existing components. Our overall approach is
close to Patch Panel as we seek to support incremental inte-
gration. However, we exploit a distributed state model with
an artefact framework that enable incremental addition of
features to both artefacts and applications by the end users.
In SpeakEasy [11] mobile codes (typed data streams and ser-
vices) are exchanged among heterogeneous devices to create
an interoperable environment. SpeakEasy does not consider
the incremental extension of artefact services or end user de-
ployment as its primary focus is on service composition. In-
terPlay [18] is a home A/V device composition middleware
and uses pseudo sentences to capture user intent, which is
converted into a higher level description of user tasks. These
tasks are mapped to underlying devices that are expressed
using device description. Although our approach is very
close to InterPlay as we employ similar mapping of tasks
to device services, our challenge is to support incremental
extension and deployment of both artefacts and applications
by the end users. Our artefact framework is a major leap
from InterPlay which signifies our contribution. A range of
middlewares for pervasive systems [6, 24, 25] specify their
application development processes strictly. These middle-
wares usually provide end-to-end support for the application
developer, i.e., instrumented artefacts are encapsulated into
wrappers and an array of APIs is provided to the applications
to manipulate them. The problem of this approach is that the
applications and the instrumented artefacts become virtually
incompatible in other environments. We have adopted a doc-
ument centric approach allowing development of infrastruc-
ture independent applications and artefacts and the runtime
association between them is provided by FedNet.

End User Tools
Most of the works that approached end user support in per-
vasive literature have taken either rule based or recognition
based perspective to customize the pro-activity of the appli-
cation. Rule based tools like iCAP [8], Stick-e-notes [22],
Alfred [13] provide visual tool, or sound macros to the end
7Jini - http://www.sun.com/software/jini
8Universal Plug and Play - http://www.upnp.org

290

users to define conditional rules based on the context to con-
nect input and output events. Similarly recognition tools,
or more formally Programming by Demonstration systems
like CAPpella [7] uses machine learning techniques to al-
low end users to associate personalized rules with real world
events.These approaches are valid for rapid prototyping and
also to personalize the pro-active behavior of the applica-
tions. However, they do not provide any general guideline
regarding application or instrumented artefact deployment
by the end users. Moreover, their support are primarily for
developers to assist rapid prototyping and are not suitable for
casual users with no or minimal technical background. One
notable example is the Jigsaw Editor [15] that uses puzzle
metaphor and allows non expert users to configure services
intuitively by assembling available components (e.g., con-
necting a doorbell to a camera for taking a photo shot when
someone rings the bell). Their study shows that end users
understand the semantic association of devices and can ma-
nipulate them in order to meet their changing house hold
demands. We are highly influenced by their findings and
our overall approach of providing simple, easy-to-use de-
ployment tool with FedNet is aligned with their projection.
We extrapolated our system by allowing end users to intro-
duce new applications or to extend existing artefacts’ ser-
vices by manipulating RFID and touch buttons regardless of
the application or artefact types which simplifies end users
involvement considerably.

DISCUSSION AND CONCLUSION
We reckon that in the near future, end users will be involved
in building smart homes and this involvement must support
the evolving nature of the home, i.e., incremental deploy-
ment. To provide this support, we presented a system in-
frastructure utilizing an artefact framework. Also, a tangible
deployment tool is provided that simplifies the end users in-
volvement significantly. We have reported a real life deploy-
ment experiment to evaluate our approach which revealed
several interesting usability issues.
The profile notion has the potentially serious implication that
standard common vocabularies or ontologies will be needed
to support general interoperability of profiles and applica-
tions. However, by profile abstraction, we are not trying to
define the ontology for profiles. Instead we are providing a
structure that designers can use to disseminate their imple-
mented ontology and glue it with rest of the infrastructure.
One immediate avenue of our future work is providing a mo-
bile deployment tool using an RFID reader augmented mo-
bile device (phone or PDA) to support spatially distributed
deployment. We are currently in the process of placing our
system in a number of users’ domestic environments for pro-
longed evaluation. Furthermore, responding to end users’
concerns we will replace the term “profile” with “feature”.
The contributions of this paper are two-fold. First, the sys-
tem architecture that allows the development of plug and
play artefact and generic applications regardless of the con-
straints of the target environment. Second, a simple and
carefully designed tangible deployment tool that allows end
users to deploy and incrementally enhance a smart space
without going through complex authoring or configuration
steps. Importantly, our findings put forth the fact that the

end users might be involved in deploying future ubicomp
systems if appropriate tool and supporting infrastructure are
provided. We consider the findings from our experiment are
very useful for further research exploration in the ubiquitous
computing domain, particularly one that involves augmented
artefacts.

ACKNOWLEDGEMENT
We like to thank Simo Hosio for his contribution to this
work, all the participants for their voluntary contributions
and the anonymous reviewers and our shepherd for their
valuable feedback.

REFERENCES
[1] S. Antifakos, F. Michahelles, and B. Schiele. Proactive instructions for furniture

assembly. In 4th International Conferenc on Ubiquitous Computing, 2002.
[2] R. Ballagas, A. Szybalski, and A. Fox. Patch panel: Enabling control-flow inter-

operability in ubicomp environments. In PerCom 2004, 2004.
[3] C. Beckmann, S. Consolvo, and A. LaMarca. Some assembly required: Support-

ing end-user sensor installation in domestic ubiquitous computing environments.
In Ubicomp 2004.

[4] M. Beigl, H. W. Gellersen, and A. Schmidt. Media cups: Experience with design
and use of computer augmented everyday objects. Computer Networks, special
Issue on Pervasive Computing, 35-4, 2001.

[5] J. Brooke. SUS: A quick and dirty usability scale, pages 189–194. Usability Eval-
uation in Industry. Taylor and Francis, London, 1996.

[6] A. K. Dey, G. Abowd, and D. Salber. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human Com-
puter Interaction, 16(2-4):97–166, 2001.

[7] A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu. a cappella: Programming
by demonstration of context-aware applications. In ACM CHI 2004, 2004.

[8] A. K. Dey, T. Shon, S. Streng, and J. Kodama. Supporting end user programming
of context-aware applications. In Pervasive 2006.

[9] W. K. Edwards, V. Bellotti, A. K. Dey, and M.W. Newman. Stuck in the middle:
The challenges of user-centered design and evaluation of infrastructure. In CHI
2003.

[10] W. K. Edwards and R. Grinter. At home with ubiquitous computing: Seven chal-
lenges. In Ubicomp 2001, 2001.

[11] W. K. Edwards, M. Newman, J. Sedivy, T. Smith, and S. Izadi. Challenge: re-
combinant computing and the speakeasy approach. In th ACM MobiCom, 2002.

[12] K. Fujinami, F. Kawsar, and T. Nakajima. Awaremirror: A personalized display
using a mirror. In Pervasive 2005, 2005.

[13] K. Gajos, H. Fox, and H. Shrobe. End user empowerment in human centered per-
vasive computing. In International Conference on Pervasive Computing, 2002.

[14] H. Gellersen, G. Kortuem, A. Schmidt, and M. Beigl. Physical prototyping with
smart-its. IEEE Pervasive Computing, 03(3):74–82, 2004.

[15] J. Humble, A. Crabtree, T. Hemmings, B. K. Karl-Petter Åkesson, T. Rodden,
and P. Hansson. Playing with your bits’: user composition of ubiquitous domes-
tic environments. In Ubicomp 2003.

[16] B. Johanson, A. Fox, and T. Winograd. The interactive workspaces project: ex-
periences with ubiquitous computing rooms. IEEE Pervasive Computing, 1-2,
2002.

[17] N. Kohtake, R. Ohsawa, M. Iwai, K. Takashio, and H. Tokuda. u-texture: Self-
organizable universal panels for creating smart surroundings. In Ubicomp 2005.

[18] A. Messer, A. Kunjithapatham, M. Sheshagiri, H. Song, P. Kumar, P. Nguyen,
and K. H. Yi. Interplay: A middleware for seamless device integration and task
orchestration in a networked home. In IEEE PerCom 2006.

[19] T. Nakajima, V. Lehdonvirta, E. Tokunaga, and H. Kimura. Reflecting human
behavior to motivate desirable lifestyle. In The Conference on Designing Inter-
active Systems (DIS 2008), 2008.

[20] O. G. C. Inc. Sensor Model Language (SensorML) implementation specification.
[21] J. O’Brien, T. Rodden, and M. R. J. Hughes. At home with the technology:

an ethnographic study of a set-top-box trial. ACM Transactions on Computer-
Human Interaction, 6, 1999.

[22] J. Pascoe. The stick-e note architecture: Extending the interface beyond the user.
In Intelligent User Interfaces, 1997.

[23] T. Rodden and S. Benford. The evolution of buildings and implications for the
design of ubiquitous domestic environments. In ACM CHI 2003, 2003.

[24] M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and
K. Nahrstedt. Gaia: A middleware infrastructure to enable active spaces. IEEE
Pervasive Computing, pages 74–83, 2002.

[25] J. P. Sousa and D. Garlan. Aura: an architectural framework for user mobility in
ubiquitous computing environments. In 3rd Working IEEE/IFIP Conference on
Software Architecture, 2002.

[26] M. Strohbach, H.-W. Gellersen, G. Kortuem, and C. Kray. Cooperative artefacts:
Assessing real world situations with embedded technology. In UbiComp 2004.

291

