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A Middleware
Infrastructure for 
Active Spaces

P
ervasive computing environments aug-
ment human thought and activity with
digital information, processing, and
analysis, providing an observed world
that is enhanced by the behavioral con-

text of its users. A spectrum of heterogeneous com-
putation and communication devices aim to enhance
user productivity and facilitate everyday tasks.

Despite the prevalence of such
devices, however, no suitable soft-
ware infrastructure with which to
develop applications for ubiqui-
tous computing habitats or living
spaces exists. 

To address this deficiency, we
developed Gaia, a metaoperating
system1 (detailed in the sidebar
“The Gaia Operating System”)

built as a distributed middleware infrastructure that
coordinates software entities and heterogeneous net-
worked devices contained in a physical space. Gaia
is designed to support the development and execu-
tion of portable applications for active spaces2—
programmable ubiquitous computing environments
in which users interact with several devices and ser-
vices simultaneously. Gaia exports services to query,
access, and use existing resources and context, and
provides a framework to develop user-centric,
resource-aware, multidevice, context-sensitive, and
mobile applications.  

By extending the concepts of traditional operating
systems to ubiquitous computing spaces, we can sim-

plify space management and application develop-
ment. Gaia’s main contribution is not its individual
services but rather the functionality it provides as the
result of the interaction of these services. This inter-
action lets users and developers abstract ubiquitous
computing environments as a single reactive and pro-
grammable entity instead of a collection of heteroge-
neous individual devices. In this article, we present
an overview of the Gaia architecture, focusing on the
complete system rather than individual services. 

Active spaces
A physical space, illustrated in Figure 1a, is a geo-

graphic region with limited and well-defined physi-
cal boundaries containing physical objects, hetero-
geneous networked devices, and users performing a
range of activities. An active space, shown in Figure
1b, is a physical space coordinated by a responsive
context-based software infrastructure that enhances
mobile users’ ability to interact with and configure
their physical and digital environments seamlessly.
Active spaces must support the development and exe-
cution of user-centric mobile applications. 

In active spaces, sessions associate user data and
applications with users. This lets users move across
active spaces and have their data and applications
always available. When a user enters an active space,
the user’s sessions are dynamically mapped to the
active space resources. Users can define different ses-
sions and can activate and suspend them as neces-
sary. We refer to the collection of sessions associated
with a user as the user virtual space. The user virtual

The Gaia metaoperating system extends the reach of traditional
operating systems to manage ubiquitous computing habitats and 
living spaces as integrated programmable environments.
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T he motivation behind the Gaia operating system is that of

traditional operating systems, but at another level of abstrac-

tion. The Gaia OS abstracts a space and all the resources it contains

as a single programmable entity. Abraham Silberschatz and his col-

leagues define seven services common to all operating systems:

program execution, I/O operations, file-system manipulation, com-

munications, error detection, resource allocation, and accounting

and protection.1 The Gaia OS currently provides the first six

services, and we are completing a security prototype. 

Program execution
The Gaia OS component management core lets applications create,

destroy, and upload components in any execution node in the active

space. CMC uses the program execution facilities of the execution

node’s OS, which includes memory, thread, and process management.

I/O operations
Gaia’s OS leverages the low-level OS I/O functionality and pro-

vides device drivers (implemented as distributed objects) to export

it to the rest of the active space. Gaia’s OS also defines default I/O

channels (input, output, and error) and maps them to event chan-

nels, allowing the creation of a default space “console.”

File-system manipulation
The context file system lets users, services, and applications

manipulate files in active spaces. CFS interacts with devices’ low-

level OS file systems to access and export data to the active space.

File locations are hidden from users, but users can access them

from any device in the active space. CFS extends traditional OSs

with functionality to dynamically transform data to different for-

mats and to organize data by context. 

Communications
The Gaia OS supports direct communication, which is similar to syn-

chronous low-level OS interprocess communication (IPC), and indirect

communication, which is similar to asynchronous low-level OS IPC. The

Gaia OS supports remote procedure calls (RPC) for direct communica-

tion and events (suppliers and consumers) for indirect communication.

In both cases, Gaia’s OS leverages standard communication middleware. 

Events, which are similar to Unix signals, notify entities in the

active space about added or removed resources, error conditions,

file system changes, and application state changes. The use of

asynchronous events improves system reliability by decoupling

event producers from event listeners. Gaia entities use other

mechanisms, such as RPC for remote method invocation and

nonblocking streaming for audio and video transmission.

Error detection
Error detection includes both software and hardware errors that

affect application execution. The Gaia OS uses the event service to

report errors. Users register services that receive error notifications

and react accordingly (for example, they might notify users, restart

components, or suspend applications).

Resource allocation
In a traditional OS, resource allocation relates to managing

hardware resources such as memory, CPU, and disk. The Gaia OS

extends the notion of resource allocation to devices, services, and

applications in the active space. 
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Figure 1. Physical and active spaces. (a) A physical space contains physical objects, networked devices, and users within well-defined
physical boundaries. (b) An active space extends the physical space, adding coordination via a context-based software infrastructure.



space requires support to locate resources
available in the user’s environment and to
map the sessions to the existing resources. 

Active spaces such as the one depicted
in Figure 2 challenge existing assumptions
for traditional PC applications. As Marc
Weiser observed, ubiquitous computing
requires systems that vanish into the back-
ground.3 In an active space, a one-to-one
relationship between a user and keyboard,
mouse, and display interfaces does not
exist. Indeed, the complexity of ubiquitous
applications encourages a relationship
between a user and an active space. Active-
space system-software support should sim-
plify application programming and execu-
tion. Much like PC applications rely on
operating systems, active-space applica-
tions need an OS that supports access to
and operation of the resources contained
in the space that hosts their execution. The
sidebar “Related Work in Active Environ-
ments” describes other work in this area.

System software 
Gaia manages an active space’s resources

and services; provides location, context,
and event services; and stores information
about the active space. Gaia has three
major components, as Figure 3 shows: the
kernel, the application framework, and the
applications. 

Gaia kernel
The Gaia kernel consists of a compo-

nent management core and an interrelated

set of basic services used by all Gaia
applications. The CMC dynamically loads,
unloads, transfers, creates, and destroys
all Gaia components and applications.
Because they are component-based, dis-
tributed, and mobile, Gaia applications
require support for remote component exe-
cution and management. Remote execution
nodes register with the active space and host
the execution of Gaia components.

The current implementation of Gaia
uses Corba; however, the system could also
use SOAP, RMI, or customized communi-
cation middleware. Although Corba pro-
vides a stable infrastructure for distributed
object interaction, active spaces require
extensions to handle soft state, dynamic
resource detection, and fault tolerance.
Gaia offers five basic services:

• Event manager
• Context service
• Presence service
• Space repository
• Context File System

Some of the services, such as the event
manager, are built on top of existing mid-
dleware services, while others, such as the
presence service, extend the communica-
tion middleware. 

Event manager. Active spaces require a flex-
ible mechanism to expose changes in their
current state—for example, when a com-
ponent starts, an application moves, or a

user enters the active
space. The event manager
service distributes events
in the active space and
implements a decoupled

communication model based on suppliers,
consumers, and channels.  Event channels
forward suppliers’ events to the consumers
registered with the channel. The event
manager has a single entry point and one
or more event channel factories. Each event
factory creates channels for specific types of
events—for example, high-speed or persis-
tent events. A default set of event channels
notifies interested Gaia components about
new services, applications, people, errors,
and component heartbeats. Applications
can also define their own event channels for
application state changes. The event service
lets applications tap into event channels to
learn about changes in the system.

By decoupling information suppliers from
information consumers, the event manager
increases system reliability. If a supplier fails,
the service can automatically replace it with
a replica that continues delivering messages
to its assigned channel without disrupting
the system. Our current event manager
implementation uses Corba’s event service4

as the default event factory. A more detailed
description of the event manager service is
available elsewhere.5

Context service. Gaia applications can use
context information to adapt to user behav-
iors and activities.6 Our context service lets
applications query and register for particu-
lar context information, which helps them
adapt to their environment. The context
infrastructure consists of several compo-
nents, or context providers, that offer infor-
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Figure 2. (a) Our
prototype Gaia-enabled
active space and (b) a list
of the room’s equipment.
The active meeting room
serves as a testbed for our
software infrastructure
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seminars.



mation about the current context. These
include sensors that track people’s loca-
tions, room conditions (for example, tem-
perature and sound), weather, and current
stock prices. Other components can infer
certain higher-level contexts on the basis of
sensed information. For example, one com-
ponent deduces the type of activity occur-
ring in a room (a meeting, presentation, or
movie screening, for example) on the basis
of who is in the room, which applications
are running, and other cues. A registry

maintains a list of available context
providers. Applications can use this registry
to find providers of the contexts they desire.

We base our context model on first-order
logic and Boolean algebra, which lets us eas-

ily write rules to describe context informa-
tion. We represent context using a first-order
predicate with four arguments. We borrow
this structure of a context predicate from a
simple clause in the English language of the
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based application framework, and active
space applications.

T he Microsoft EasyLiving project focuses on home and work

environments.1 The main properties of these environments

are self-awareness, casual access, and extensibility. The project

infrastructure lets interfaces move with the user. Easy Living uses

computer vision to recognize gestures and users and to detect

user location. The system uses this information to customize the

room. Whereas Easy Living sees the desktop as the primary user

interface, Gaia allows application partitioning on different devices.

The i-Land2 and Roomware3 research projects present infra-

structures that digitally augment meeting rooms. Both projects

aim to make it easy for users to exchange ideas, digitally record

meeting results, and search knowledge bases, and both provide

multimedia data exchange tools for group collaboration.

Stanford’s Interactive Workspaces presents an augmented meeting

room that promotes group work.4 The room contains wall-sized

touch screens, projectors, microphones, speakers, laptops, and

PDAs. Coordinating the entities in the room requires a high-level

operating system. 

Roomware, i-Land, and Interactive Workspaces look at users’

interactions with physical spaces (mostly meeting rooms) and col-

laborative work groups. Like the developers of Roomware and

Interactive Workspaces, we believe that a need for a supporting

infrastructure exists. However, we focus on generic spaces (office

and house, for example), which might or might not imply collabo-

rative work. While some active spaces define a collaborative envi-

ronment, others are mostly single-user based. Furthermore, Gaia

expects mobile users to move their applications and data across

different active spaces.

Aura shares several design goals with Gaia.5 It emphasizes the

notion of mobile users moving among environments and defines an

environment similar to our active spaces. Tasks identify user-asso-

ciated applications that can migrate from one environment to

another. A software infrastructure supports task execution, maximiz-

ing available resources and minimizing user distraction. The main dif-

ference between Gaia and Aura is that Gaia emphasizes space pro-

grammability. Gaia allows users to configure their applications to

benefit from the resources in their current space. Users can interact

with multiple devices simultaneously, reconfigure applications

dynamically, suspend and resume groups of applications, and pro-

gram application behavior based on context attributes. 
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form <subject><verb><object>. An atomic
context predicate is defined as Con-
text(<ContextType>, <Subject>, <Relater>,
<Object>). The context type refers to the
context the predicate is describing; the sub-
ject is the person, place, or thing with which
the context is concerned; and the object is a
value associated with the subject. In our
implementation, ContextType maps to an
event channel. The relater associates the sub-

ject and the object much like a comparison
operator (=, >, or <), verb, or preposition.
Example context predicates are Context(tem-
perature, room 3231, is, 98 F) and Context(printer status,
srgalw1 printer queue, is, empty). In some cases, one
or more predicate elements might be empty. 

We can construct more complex contexts
by performing first-order logic operations
such as quantification, implication, con-
junction, disjunction, and context predicate
negation. One example of a rule is Context(num-
ber of people, room 2401, >, 4) AND Context(application,
Powerpoint, is, running) => Context(social activity, room
2401, is, presentation).

Anind K. Dey’s and Gregory Abowd’s
Context Toolkit inspired our context infra-
structure.7 We structure the expressive
power of contexts with first-order logic to
frame rules and queries and to infer prop-
erties involving context using mechanisms
similar to those of Prolog and other auto-
mated theorem provers. We can determine
high-level context information from low-
level context information, much like the
Context Toolkit’s aggregators. Our system
also formalizes the exchange of context
information among system components
and lets us describe component properties. 

Presence service. As a resource-aware infra-
structure, Gaia must maintain updated
information about active space resources.
Our presence service differs from existing
context infrastructures (such as the Context

Toolkit) in that it detects and maintains soft-
state information about software compo-
nents, devices, and people. The service is
divided into two main subsystems: digital-
entity presence and physical-entity presence. 

Gaia currently defines four basic types
of entities: application, service, device, and
person. The digital entity presence subsys-
tem detects service and application entities,
which periodically send heartbeats to

notify the service that they are in the active
space. When a digital entity fails to send
the heartbeat, the digital-entity presence
subsystem assumes that it is no longer
available—either it was stopped or it
crashed—and notifies the rest of the space
that the entity left.

The physical-entity presence subsystem
detects devices and people present in the
active space. This subsystem uses different
types of sensors to proactively detect phys-
ical entities and, if possible, their locations.
The physical-entity presence subsystem
implements a beaconing mechanism on
behalf of the physical entities, acting as a
proxy. It is implemented as an open infra-
structure in which we can incorporate dif-
ferent sensor device drivers and algorithms. 

Space repository. Active space entities
need to know the resources present in the
active space and their properties. The space
repository stores information (name, type,
owner, and so on) about all software and
hardware entities in the space and lets
applications browse and retrieve entities
on the basis of specific attributes. The space
repository learns about entities entering
and leaving the active space through the
presence service channels. 

Applications use the space repository
during instantiation to find suitable
resources. When an application starts exe-
cuting, for example, it uses the space repos-

itory to find appropriate resources (such
as execution nodes, displays, and speak-
ers). This level of indirection lets us
describe applications generically (active-
space independent) and map them to
resources in different active spaces. 

All active-space resources are associated
with an XML description that contains
their properties. When a new resource
enters the active space, the space repository
contacts it to obtain its XML description.
The current version of the space repository
uses a Corba Trader4 to store entity data.
We currently use the Trader’s constraint
query language, but we plan to extend it
with a generic language that could be
mapped either to the Corba Trader con-
straint language or to standard SQL. For
example, the query Category = = ‘Device’ and Type
= = ‘Display’ returns a list of all displays in the
active space.

Context File System. Active spaces are
often designated for specific tasks. Appli-
cations can use task context to distinguish
meaningful from irrelevant information.
Long-running processes might not have
the luxury of human intervention to locate
required data, which can vary over time
owing to context changes. In addition,
users are highly mobile in active spaces
and should not have to manually transfer
files or data between environments. The
environment should assist users in mak-
ing personal storage automatically avail-
able in the users’ current location.

To address these issues, we have devel-
oped Context File System, a context-aware
file system that uses application-defined
properties and environmental context infor-
mation to simplify many of the tasks that are
traditionally performed manually or require
additional programming. More specifically,
the CFS uses context to 

• Make personal data automatically avail-
able to applications, conditioned on user
presence

• Organize data to facilitate locating rel-
evant material for applications and users

• Retrieve data in a format based on user
preferences or device characteristics
through dynamic data types 

78 PERVASIVEcomputing http://computer.org/pervasive

M I D D L E W A R E

When a digital entity fails to send the heartbeat,

the digital entity presence subsystem assumes

that it is no longer available and notifies the rest

of the space that the entity left.



The CFS constructs a virtual directory
hierarchy,8 based on the types of context
associated with particular files, and aggre-
gates related material. We implement the
directory hierarchy layout using a mount-
ing mechanism in which users own mount
points, which contain context tags. Users
can merge their personal mount points
into a space to make their data available
to applications and other users. The CFS
is aware of different types of context,
which the context service, users, and
applications define.

The CFS presents context as directories,
in which path components represent con-
text types and values. The file system path
syntax uses the context service’s quaternary
predicate structure, in which the relater
defaults to equality. We can attach context
to files and directories by copying data to a
context directory, which associates the con-
text with the data. The virtual directory
hierarchy forms a simple query language to
determine what types of context are
attached to files. For example, to determine
which files have the associated context loca-
tion == RM2401 && situation == meeting, we enter
/location:/RM2401/situation:/meeting directory. The
system is a hybrid database and file system;
the database functionality offers the flexi-
bility to search for relevant information, and
the file system functionality provides a famil-
iar interface for application developers. 

The CFS combines the environment’s
current context properties (location, time,
situation, and so on) with user-specified
properties to display the correct applica-
tion data. For example, a seminar applica-
tion might require all papers to be dis-
cussed during a seminar. A calendar or the
moderator’s arrival can trigger the appli-
cation; thus, the application must be able
to locate the correct files to display. The
application simply opens the directory for
the current papers (say, /type:/papers/current).
The file system uses the current location,
situation, and time along with the user-spec-
ified request, “papers,” to find the correct
files for the application. The directory’s con-
tents might change automatically every
week, as new papers are added and others
time out. From the application’s viewpoint,
however, it simply opens the same directory

every week and finds the relevant material. 
The space might also define a context that

is irrelevant to the current task. The context
“the weather is sunny,” for example, might
be meaningless to the seminar application,
but might make sense for a telepresence
application. The system resolves this issue
by ignoring any context that is valid in the
environment but not explicitly associated
with the data. Although we view the con-
text directory structure as a hierarchy, con-
text directories impose no fixed ordering.
Context paths can be traversed in any order.

The CFS architecture is composed of
mount and file servers. One mount server
maintains an active space’s namespace. The
namespace changes as users physically
move in and out of the space. File servers
export storage to the local space from local
or remote locations. We implement our
servers at the application-level and lever-
age existing native file systems to access
files and directories. You can find more
details about the CFS elsewhere.9

Application framework
In a Gaia active space, applications are

partitioned among a group of coordinated
devices.10 Applications receive input
events from devices, services, users, and
other applications; present their state using
different types of devices (for example,
sound system, display, and temperature-
control devices); and adapt to changes in

the environment. Active spaces let users
decide how to interact with applications
using a number of inputs, outputs, and
processing devices. 

Developing applications for active
spaces is challenging. For example, an
application might need to move the output
data from one display to another, duplicate
the output to different displays, transform
a visual representation into speech, and

switch from a mouse to a voice input sen-
sor (a hardware or software entity that trig-
gers changes in the application), all of
which it must perform while providing
application-consistency guarantees. Our
application framework lets users construct,
run, or adapt existing applications to active
spaces. The framework consists of 

• A distributed component-based infra-
structure, which reuses the application
partitioning proposed by the traditional
Model-View-Controller (MVC)11 and
introduces new functionality to export
and manipulate the application compo-
nent bindings.

• A mapping mechanism, which cus-
tomizes applications to active spaces.

• A group of policies that defines sets of rules
for customizing several aspects of applica-
tions, including instantiation, mobility, reli-
ability, and composition (number of com-
ponents and their bindings).

Infrastructure. The application infrastruc-
ture has four components. The first three
are the building blocks for any application:  

• The model implements the application
logic. 

• The presentation exports the application
data. 

• The input sensor lets the user interact
with the application.

• The controller maps input sensor events
(such as touch-screen events and context
changes) into method requests for the
model.

• The coordinator manages the first four
components. 

The model, presentation, and controller
are strictly related to application-domain
functionality, while the coordinator pro-
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vides the application’s metalevel function-
ality. Figure 4 illustrates the framework
infrastructure.

Mapping mechanism. Active-space hetero-
geneity requires a mechanism for customiz-
ing applications to different scenarios. For
example, a calendar application running in
an active office might simultaneously use a
plasma display to show the week’s appoint-
ments, a handheld to display the day’s
appointments, and an input sensor running
on a PC to enter data. The same calendar
running in an active car might use the car’s
sound system to broadcast information
about the next appointment, and a speech-
recognition-based input sensor to query the
calendar and to enter and delete data. 

The mapping mechanism defines two
application description files: an applica-
tion generic description and an applica-
tion customized description. An AGD,
which is created by the application devel-
oper, is an active space-independent
description listing the application compo-
nents, the minimum and maximum num-
ber of instances allowed, and component
requirements (for example, audio output
and Windows OS). An ACD contains a list
of application components, including their
associated execution nodes (chosen
according to component requirements)
and initialization parameters. An ACD is
implemented as a script that coordinates
the instantiation and assembly of the dif-
ferent components. A specialization mech-
anism uses an AGD and the target active
space’s space repository service to generate

ACDs. The mapping mechanism uses the
space repository to find devices and ser-
vices that meet AGD requirements.

Customization policies. The application
framework infrastructure and the map-
ping mechanism provide the tools to build
and instantiate applications. The applica-
tion framework relies on policies to
address reliability, adaptation, mobility,
and related issues. Users can define their
own policies or can use the framework’s
default policies.

MVC extensions. In addition to adding a
coordinator component to manage appli-
cation component composition, we have
introduced three changes to MVC to
accommodate our requirements for envi-
ronmental awareness, application parti-
tioning, context sensitivity, user-centrism,
and mobility: 

• We define a new component, presenta-
tion, that models any output represen-
tation, not only graphical representa-
tions as the MVC view proposes. 

• We generalize the definition of the MVC
input sensor (a hardware device) to
incorporate software components (a
context input sensor, for example). 

• We generalize the input sensor time-
sharing model defined by the MVC into
a space–time-sharing model. 

In MVC, all application views and con-
trollers share input sensors (a mouse and
a keyboard, for example), and thus the OS

must schedule the input sensors. Graspable
interfaces12 enable space sharing, which
avoids input sensor scheduling by assign-
ing different input sensors to the applica-
tion’s different functions. We combine the
two approaches into space–time sharing to
model active space applications. A music
application running in an active space
might use a PDA to control the current
song and speech recognition to control the
volume (space sharing); however, the same
space might host a calendar application
that uses the PDA to browse appoint-
ments and uses speech recognition to con-
trol the calendar’s functionality (time shar-
ing). Space–time sharing allows more than
one active controller and presentation.
This is unlike MVC, in which only one
controller–view pair can be active at any
time. More details about the application
framework are available elsewhere.13

Gaia management tools
Gaia relies on a scripting language to

coordinate the digital entities running in
an active space. This language simplifies
overall active-space management. For
example, we use a script to implement the
bootstrap mechanism that starts the Gaia
OS execution in a physical space.

Scripting language
Gaia uses a high-level scripting lan-

guage, LuaOrb, to program and configure
active spaces and to coordinate the active
entities they contain.14 LuaOrb is based
on the interpreted language Lua, which
simplifies management and configuration
tasks and allows for rapid prototyping and
testing.15 The Lua interpreter is fast and
has a small memory footprint, which
makes it suitable for resource-constrained
devices. LuaOrb implements language
bindings between Lua and Corba, COM,
and Java. LuaOrb’s ability to communi-
cate with various component models lets
it easily interact with our system compo-
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nents. We use Lua to implement the boot-
strap algorithm, instantiate applications,
interact with execution nodes to create com-
ponents and easily glue them together, and
quickly test components and applications. 

The example script in Figure 5 instanti-
ates and assembles an MP3 application. The
script uses the Gaia space repository to
obtain a handle to an audio output device
(line 1); an execution node for the model (line
2); an execution node for the coordinator
(line 3); and a touch screen, “plasma 1,” for
the input sensor (line 4). It then uses the
CMC functionality to create the coordina-
tor (line 5),  model (line 6), presentation (line
7), and input sensor (line 8). Finally it assigns
the model to the coordinator (line 9) and reg-
isters the presentation (line 10) and the input
sensor (line 11) with the application, using
the interface exported by the coordinator.

Although we achieve the same result
with C++ and Java, they require more
code, time, and user effort. Lua effectively
simplifies the manipulation and coordina-
tion of entities. 

Bootstrap protocol
Gaia implements a bootstrap protocol

that interprets a configuration file (Lua
script) and starts the kernel services accord-
ingly. The configuration file contains infor-
mation about the Gaia kernel services,
such as the service name, the name of the
service interface, the Gaia node or nodes
that will host the service, the service instan-
tiation policy, and start parameters. Indi-
vidual Gaia kernel services can also spec-
ify additional configuration parameters.
Currently, the active-space administrator
provides the list of devices in the space. In

the future, we expect automatic device dis-
covery via different sensor technologies.

Figure 6 illustrates a state transition dia-
gram with the instantiation order of the
Gaia kernel services. The configuration file
lists primary and backup Gaia nodes for
each Gaia kernel service; the bootstrap
process uses the dependencies diagram and
the configuration file to decide whether or
not to start a service in a particular Gaia
node. Gaia uses a time-out mechanism and
a probing protocol to ensure that each Gaia
service is started in at most one machine (as
specified in the configuration file).

Using Gaia
We developed the presentation manager

application to demonstrate Gaia’s func-

tionality. The application lets users present
slides in multiple displays simultaneously,
move and duplicate slides to different dis-
plays during the presentation, and move
and duplicate the input sensor controlling
the presentation to different devices.16 The
presentation manager uses Microsoft’s
PowerPoint to manipulate slides (using the
COM interface).

Our experience with the application
shows that most users edit the presentation
in their offices and use the CFS to import
the data into the active meeting room. The
most common interaction mechanism is a
wireless-enabled handheld device (using
Bluetooth) running a software input sen-
sor with buttons for start, stop, next, and
previous. 
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Figure 5. An example Lua script for 
instantiating and assembling an MP3
application.

1. local presentationExNode = Gaia.getEntity(“Category == ‘Device’ and Type == ‘AudioOut’ “)

2. local modelExNode =   Gaia.getEntity(“Category == ‘Device’ and Type == ‘ExecutionNode’

and Name == ‘aspc1.uiuc.edu’”)

3. local coordinatorExNode = Gaia.getEntity(“Category == ‘Device’ and Type == ‘ExecutionNode’

and Name == ‘aspc2.uiuc.edu’”)

4. local inputSensorExNode = Gaia.getEntity(“Category == ‘Device’ and Type == ‘Touchscreen’

and Name == ‘plasma1’”)

5. local coordinator = coordinatorExNode:createComponent(“Coordinator”, “-name MP3Coordinator”)

6. local model =   modelExNode:createComponent(“MP3Model”, “-name MP3Model”)

7. local presentation = presentationExNode:createComponent(“MP3Presentation”, “-name MP3Player”)

8. local inputsensor = inputSensorExNode:createComponent(“VCRInputSensor”,”-name MP3InputSensor”)

9. coordinator:setModel(model)

10. coordinator:registerPresentation(presentation)

11. coordinator:registerInputSensor(inputsensor)

Interface
repository

Remote
execution

node

Naming
service

Presence
service

Space
repository

Component
repository

Context
file system

Gaia service Corba required service

(For devices capable of 
hosting Gaia components)

Context
service

Gaia kernel
configuration

file

Event
manager

Figure 6. Gaia kernel bootstrap sequence.
Solid green circles denote Gaia kernel 
services, and dotted yellow circles denote
middleware-specific services.



Registering with the active space
When a speaker enters a Gaia-enabled

room carrying a handheld device and an RF
active badge, the presence service detects the
badge and sends an event to the person-
presence channel. This event contains infor-
mation about the speaker, including a ref-
erence to his or her profile. The space repos-
itory receives the event, retrieves an XML
description for the user entity, and stores the
information. The CFS also receives the event
about the new user, accesses the user pro-
file, obtains the speaker’s mount points, and
mounts the data in the space. The slide show
file stored in the speaker’s active office is
now accessible from the active meeting
room (see Figure 2).

Next, the speaker registers the handheld
with the space, so that he or she can use it
to control the presentation. The room is
equipped with infrared beacons that broad-
cast the space name and a handle to a direc-
tory service. This directory service (a Corba
naming context) contains references to the
Gaia kernel services. The handheld device
picks up the infrared beacon, resolves the
event manager from the directory, and ini-
tiates the beaconing mechanism, which peri-
odically sends a heartbeat event to the device
heartbeat channel. The presence service
receives the event and sends a new event to
the device presence channel to notify the rest
of the space about the new device. The space
repository receives the event, contacts the
device to retrieve the XML description, and
stores the information. Both the speaker and
the handheld device are now entities of the
active space. They are stored in the space
repository; other entities can contact them;
and they can use the space resources.

Starting the application
The active meeting room runs an appli-

cation that triggers actions according to
user-specified conditions. We configure this
application to automatically start the pre-
sentation manager application when the
speaker enters the room. The application
registers with the context service to be noti-
fied when the room context meets this con-
dition. The trigger service entry is a Lua
script that gets the presentation file’s name
from the /type:/presentation/current: context

directory and starts the presentation man-
ager. The context associated with the slide
show presentation file includes the entry
location=2401. Therefore, when the user data
is mounted in Active Meeting Room 2401,
the file is visible from /type:/ppt/current:. The
Lua script stored in the trigger service
requires a valid ACD to start the applica-
tion. The script uses the file system and
accesses /type:/lua/acd:/gpm/current:, which con-
tains presentation manager ACDs cus-
tomized for 2401. The Lua script chooses
the ACD “default.”

The ACD is also a Lua script that inter-
acts with the CMC to instantiate the com-
ponents. The ACD contacts the application
coordinator and registers the model, the pre-
sentations, the controllers, and the input sen-
sors. The model interacts with the event
manager to create a channel that it uses to
send update messages to the presentations
and registers the presentations with the chan-
nel. The coordinator assigns the model’s ref-
erence to the presentations, and the con-
troller’s reference to the input sensors. All the
application components initiate the beacon-
ing mechanism and are therefore detected by
the presence service, introduced to the space
using an “entered” event, and registered in
the space repository. 

Interacting with the application
The default presentation manager ACD cre-
ates the application input sensor in one of
the room’s touch screens. Say the speaker
moves the input sensor to his or her hand-
held device. To move application compo-
nents, we provide a library that interacts
with the space repository to locate the hand-
held and create a new instance of the input
sensor using the CMC. Next, the library
locates the application coordinator in the
space repository, registers the new input sen-
sor, unregisters the original sensor, and then
uses the CMC to delete the original input
sensor. The presence service stops receiving
heartbeats from the original input sensor
and sends an event to the service-presence
channel to notify it that the entity has left.
The space repository removes the informa-
tion about the entity. Using the library, the
speaker can move the presentation slides to
new displays in the middle of a presenta-

tion. New displays might be the PDAs of
people entering the meeting room.

The presentation manager uses four
plasma displays simultaneously. When the
user selects “start” on the handheld’s input
sensor, the input sensor sends a request to
the application controller, which sends a
startPresentation request to the model. The
model sends a start event to the applica-
tion updates channel. As a result, all pre-
sentations contact the model to obtain a
handle to the presentation file. Leveraging
the CFS, the model opens the file and
returns a handle. The presentations get the
file and display the first presentation slide.
When the users selects “next,” the input
sensor sends a request to the controller,
which sends a nextSlide request to the model.
The model sends a next event to the appli-
cation channel, which instructs presenta-
tions to display the next slide.

W e plan to develop new appli-
cations to validate different
aspects of Gaia. We will
also extend the infrastruc-

ture with a security service and expand our
current service implementation to support
the notion of a virtual-space abstraction.
The virtual space lets users create active-
space templates that the Gaia OS can
dynamically map to real spaces. For exam-
ple, a virtual active meeting room contains
a projector, auxiliary displays, and a touch
screen, and has an associated context model
with properties relevant to a meeting. Users
can assign applications to the virtual spaces,
which are mapped to virtual devices in the
room. The virtual-space mapping mecha-
nism interacts with an active space to find
appropriate resources on the basis of the
virtual space requirements and moves the
applications from the virtual space to the
active space. Finally, we are also studying
how to federate Gaia services to aggregate
different active spaces.
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