
1536-1268/02/$17.00 © 2002 IEEE PERVASIVEcomputing 71

The Interactive
Workspaces Project:
Experiences with
Ubiquitous Computing
Rooms

T
he interactive workspaces project
started at Stanford University in
1999 to investigate human interac-
tion with large high-resolution dis-
plays. The project initially operated

in a busy lab in which the display proved to be no
more than a curiosity since it could not be used for
long periods of time and offered little integration
with other devices. It became clear that the poten-
tial of a large display device would emerge only by

embedding it in a ubiquitous
computing environment that
could sustain realistic interactive
use. The interactive workspaces
project therefore began to design
and use rooms containing one or

more large displays that had the ability to integrate
portable devices.

The idea of ubiquitous computing1 encompasses
many different kinds of settings and devices. We
chose to narrow our focus by

• Investigating how to map a single defined
physical location to an underlying systems
infrastructure and a corresponding model of
interaction2

• Emphasizing the use of large interactive walk-up
displays, some using touch interaction

• Collaborating with other research groups, both
within and outside the field of computer science,
to construct nontoy applications in design and
engineering

We constructed several versions of our prototype
interactive workspace, which we call the iRoom,
created a software infrastructure for this environ-
ment, called iROS, and conducted experiments in
human-computer interaction in the workspace. We
also assisted outside groups in using our technology
to construct application suites that address prob-
lems in their own domains, and we deployed our
software in production environments.

Overview, goals, and contributions
As we began to construct the iRoom, we devel-

oped some guiding principles:

• Practice what we preach. From the beginning we
used the iRoom as our main project meeting room
and employed the software tools that we con-
structed. Much of our continuing research has
been motivated by our frustration at encounter-
ing something we could not accomplish in the
iRoom.

• Emphasize colocation. There is a long history of
research on computer-supported cooperative work

The interactive workspaces project explores new possibilities for people
working together in technology-rich spaces. The project focuses on
augmenting a dedicated meeting space with large displays, wireless or
multimodal devices, and seamless mobile appliance integration.

I N T E G R A T E D E N V I R O N M E N T S

Brad Johanson, Armando Fox,
and Terry Winograd
Stanford University

for distributed access (teleconferencing
support). To complement this work, we
chose to explore new kinds of support
for team meetings in single spaces, taking
advantage of the shared physical space
for orientation and interaction.

• Rely on social conventions. Many pro-
jects have attempted to make an inter-
active workspace smart.3,4 Rather than
have the room react to users, we chose
to focus on letting users adjust the envi-
ronment as they proceed with their task.
In other words, we set our semantic
Rubicon2 so that users and social con-
ventions take responsibility for actions
and the system infrastructure is respon-
sible for providing a fluid means of exe-
cuting those actions.

• Aim for wide applicability. Rather than
investigating systems and applications
just in our specific space, we decided to
investigate software techniques that
would also apply to differently config-
ured workspaces. We wanted to create
standard abstractions and application
design methodologies that apply to any
interactive workspace.

• Keep it simple. At both the interface and
software development levels, we tried to
keep things simple. On the human-inter-
face side, we faced a fundamental trade-
off in interaction design between the

necessity of supporting diverse hardware
and software and the need to provide an
interface simple enough so that people
would use it. On the software develop-
ment side, we tried to keep APIs as sim-
ple as possible, both to make the client-
side libraries easier to port and to
minimize the barrier-to-entry for appli-
cation developers.

The iRoom is our second-generation
prototype interactive workspace (see Fig-
ure 1). Several other iRooms have been cre-
ated at Stanford and elsewhere (see the
sidebar “The iRoom and Beyond: Evolu-
tion and Use of Deployed Environments”).
The iRoom contains three touch sensitive
white-board displays along the side wall
and a custom-built 9 megapixel, 6-foot
diagonal display called the interactive
mural. In addition, there is a table with a
3 ×4 foot display that was designed to look
like a standard conference-room table. The
room also has cameras, microphones,
wireless LAN support, and several wire-
less buttons and other interaction devices.

We started our research by determining
the types of activities users would carry out
in an interactive workspace. Through our
own use, and through consultation with
collaborating research groups, we arrived
at the three following task characteristics:

1. Moving data. Users in the room need
to be able to move data among the
various visualization applications that
run on screens in the room and on lap-
tops or PDAs that are brought into the
workspace.

2. Moving control. To minimize disrup-
tion during collaboration sessions, any
user should be able to control any
device or application from his or her
current location.

3. Dynamic application coordination.
The specific applications needed to
display data and analyze scenarios
during team problem-solving sessions
are potentially diverse. One company
reported using over 240 software tools
during a standard design cycle. Any
number of these programs might be
needed during a single meeting. The
activities of each tool should coordi-
nate with others as appropriate. For
example, the financial impacts of a
design change in a CAD program
should automatically show up in a
spreadsheet program that shows
related information running elsewhere
in the room.

Based on our experiences with the
iRoom, we identified some key character-
istics to be supported by the infrastructure
and interfaces in an interactive workspace.
Multiple devices (PDAs, workstations, lap-
tops, and so forth) will be in simultaneous
use in a workspace, with each chosen for its
efficacy in accomplishing some specific
task. There will also be heterogeneous
software running on these devices, includ-
ing both legacy and custom-built applica-
tions. All of these must be accessible to one
another in a standard way so that the user
can treat them as a uniform collection. This
means that any software framework must
provide cross-platform support. From the
HCI perspective, interfaces must be cus-
tomized to different displays and possibly
to different input-output modalities, such
as speech and voice.

72 PERVASIVEcomputing http://computer.org/pervasive

I N T E G R A T E D E N V I R O N M E N T S

Figure 1. A view of the interactive room
(iRoom).

Furthermore, unlike a standard PC, an
interactive workspace by its nature has mul-
tiple users, devices, and applications all
simultaneously active. On short time scales,
the individual devices might be turned off,
wireless devices might enter and exit the
room, and pieces of equipment might break
down for periods of minutes, hours, or
days. On longer time-scales, workspaces

will incrementally evolve rather than be
coherently designed and instantiated once
and for all. While providing for these
dynamic changes, interactive workspaces
must also work with a minimum of admin-
istration if they are to be widely deployed.
It is not realistic to expect a full-time sys-
tem administrator to keep a workspace run-
ning, so we need to anticipate failure as a

common case rather than as an exception.2

The system must provide for quick recov-
ery either automatically or through a sim-
ple set of user steps.

iROS meta-operating system
For any real-world system to support the

modalities and characteristics just described,
the system infrastructure must mirror the

APRIL–JUNE 2002 PERVASIVEcomputing 73

The iRoom project started with the first version of the Inter-

active Mural, a four-projector tiled display built in several

stages from 1998 to 1999. It included a pressure-sensitive floor

that tracked users in front of the display with one-foot accuracy.

The pressure sensitive floor was used in some artistic applications

but has not been duplicated in the iRoom. The first iteration of

the iRoom was constructed in Summer 1999. Like the current

version, it had three smart boards and the iTable, but it had a

standard front-projected screen instead of the interactive mural

at the front of the room.

Perhaps the biggest mistake we made in constructing the first

iRoom was in planning the cabling. It might seem like an obvi-

ous thing in retrospect, but the number of cables needed to con-

nect mouse, keyboard, video, networking, and USB devices

quickly escalated, leaving a tangle of cables that were not quite

long enough. For the second version of iRoom, we learned from

our mistakes and made a careful plan of cable routes and lengths

in advance. We made sure to label both ends of every cable with

what they were connecting.

In Summer 2000, we integrated the Interactive Mural at the

front of the iRoom, requiring a reconfiguration of the entire

workspace. During the remodel, we introduced more compact

light-folding optics for the projectors on the smart boards and

did a better job of running the cables for the room. We added a

developer lab adjacent to the room along with a sign-in area

that holds mobile devices and a dedicated machine that could

be used for room control. We configured the developer station

with a KVM (keyboard-video-mouse) switch so that all of the

iRoom PCs can be accessed from any of four developer stations.

Figure A shows the floor plan of the second version of iRoom.

One of the big headaches in building the sec-

ond version of iRoom was dealing with projec-

tor alignment and color calibration.1

Since building the second version, Interactive

Workspaces technology has been deployed at

six more locations around our campus. Through

various collaborations, Interactive Workspaces

group software is now being used in iRooms in

Sweden and Switzerland. The i-Land2 group

has also done some work that uses the Event

Heap in conjunction with their own software

framework.

REFERENCES

1. M.C. Stone, “Color and Brightness Appearance
Issues in Tiled Displays,” IEEE Computer Graphics &
Applications, vol. 21, no. 5, Sept./Oct. 2001, pp.
58–66.

2. N. Streitz et al., “i-LAND: An interactive Landscape
for Creativity and Innovation,” Proc. ACM Conf.
Human Factors in Computing Systems (CHI 99),
ACM Press, New York, 1999, pp. 120-127.

The iRoom and Beyond: Evolution and Use of Deployed
Environments

Figure A. Floor plan and behind-the-scenes look at the second version of iRoom.

41’-0”
20’-4” 20’-3”

Smart board projectors
Tech support

stations

“Mural”
projectors

B3.0

A
3.0 Sign-in

area

Meeting room

Wired utility cart
Flatscreen monitor

Mobile tech support station

Storage
benches

Floor-mounted power and
data sources, see 2.0

Developer
workstations 17

’-1
0”

20
’-3

”

Stacking chairs

Scanning
station

applications and human-computer inter-
faces written on top of it. In addition,
human-computer interfaces must consider
the underlying system’s properties to ensure
that they are not too brittle for use in real-
world situations. We call our system infra-
structure the Interactive Room Operating
System (iROS). It is a meta-OS that ties
together devices that each have their own
low-level OS. In designing the system, we
kept the boundary principle2 in mind. The
boundary principle suggests that ubiquitous
computing infrastructure must allow inter-
action between devices only within the
bounds of the local physical space—in our
case, an interactive workspace.

The three iROS subsystems are the Data
Heap, iCrafter, and the Event Heap. They
are designed to address the three user
modalities of moving data, moving control,
and dynamic application coordination,
respectively. Figure 2 shows how the iROS
components fit together. The only system
that an iROS program must use is the Event
Heap, which provides for dynamic appli-
cation coordination and forms the under-
lying communication infrastructure for
applications in the interactive workspace.

iROS subsystems
Given the heterogeneity in interactive

workspaces and the likelihood of failure in
individual devices and applications, it is
important that the underlying coordina-
tion mechanism decouple applications
from one another as much as possible.
Doing so encourages applications to be less
dependent on one another, which tends to
make the overall system less brittle and
more stable. We derive the Event Heap5

coordination infrastructure for iROS from
a tuplespace model,6 which offers inherent
decoupling.

The Event Heap stores and forwards mes-
sages known as events, each of which is a
collection of name-type-value fields. It pro-
vides a central repository to which all appli-
cations in an interactive workspace can post
events. An application can selectively access
events on the basis of pattern matching fields
and values. One key extension we made to
tuplespaces was to add expiration to events,
which allows unconsumed events to be
automatically removed and provides sup-
port for soft-state through beaconing. Appli-
cations can interface with the Event Heap
through several APIs, including Web, Java,
and C++. The Event Heap differs from
tuplespaces in several other respects that
make it better suited for interactive work-
spaces.5

The Data Heap facilitates data move-
ment by allowing any application to place
data into a store associated with the local
environment. The data is stored with an
arbitrary number of attributes that charac-
terize it. By using attributes instead of loca-
tions, applications don’t need to worry
about which specific physical file system
stores the data. The Data Heap stores for-
mat information, and, assuming it loads the
appropriate transformation plug-ins, it will
automatically transform the data to the best
format supported by retrieving applica-
tions. If a device only supports JPEG, for
example, the Data Heap will automatically
extract and convert a retrieved PowerPoint
slide into that image format.

The iCrafter system7 provides a system
for service advertisement and invocation,
along with a user interface generator for
services. iCrafter services are similar to
those provided by systems such as Jini,8

except that invocation happens through the
Event Heap. The interface manager service
lets users select a service to control and then

automatically returns the best interface for
the user’s IS device. iCrafter communicates
directly with the services through the Event
Heap. When a custom-designed interface
is available for a device-service pair, the
iCrafter system sends it. Otherwise, a more
generic generator renders the interface into
the highest quality type supported on the
device. Generation happens with interface
templates that are automatically cus-
tomized according to the local environ-
ment’s characteristics. If room geometry is
available, for example, a light controller
can show the actual positions of the lights
on a graphical representation of the work-
space. Templates also let users combine
multiple services in a single interface.

General principles
iROS applications do not communicate

directly with one another; instead, they use
indirection through the Event Heap. This
helps avoid highly interdependent applica-
tion components that could cause each other
to crash. All of the iROS systems decouple
applications referentially with information
routed by attribute rather than recipient
name. Attribute-based naming is also used,
among other places, in the Intentional Nam-
ing system.9 The Event Heap and Data
Heap also decouple applications temporally,
allowing applications to pick up messages
generated before they were running or while
they were crashed and restarting.

In our design, we treat failure as a com-
mon case. When something breaks, the sys-
tem can simply restart it. Clients automat-
ically reconnect, so the Event Heap server,
interface manager, and Data Heap server
can all be restarted without interfering with
applications other than during the period
when connectivity is lost. Thus, any sub-
set of machines malfunctioning in the
workspace can be restarted. Any impor-
tant state that might be lost during this
process is either stored in persistent form in
the Data Heap or is beaconed as soft-state
as the clients come back online.

Because the Web is popular, a great deal

74 PERVASIVEcomputing http://computer.org/pervasive

I N T E G R A T E D E N V I R O N M E N T S

Interactive workspace applications

= Standard iROS = Other infrastructure

iCrafter

Service
discovery

Data
Heap

Service
invocation

State
manager

Event HeapPersistent store File stores Other APIs

Key:

Figure 2. The iROS component structure.

of technology has been developed and
deployed that uses browsers and HTTP. We
tried to leverage this technology wherever
we could in the iROS system. The system
supports moving Web pages from screen to
screen, event submission through URLs and
forms, and automatic HTML UI generation
through iCrafter.

Human-computer interaction
In designing the interactive aspects of the

iRoom, our goal has been to let the user
remain focused on the work being done
rather than on the mechanics of interac-
tion. The HCI research has included two
main components: developing interaction
techniques for large wall-based displays
and designing “overface” capabilities to
provide access and control to information
and interfaces in the room as a whole.

Our primary target user setting is one that
we call an open participatory meeting. In
this setting, a group of 2 to 15 people works
to accomplish a task, usually as part of an
ongoing project. People come to the meet-
ing with relevant materials saved on their
laptops or on file servers. During the meet-
ing there is a shared focus of attention on a
primary display surface, with some amount
of side work that draws material from the
shared displays and can bring new material
to it. In many cases, a facilitator stands at
the board and is responsible for overall
activity flow. Other participants might also
present something during the meeting.
These meetings can at times include con-
ventional presentations, but our goal is to
facilitate interaction among participants.

Examples of such meetings conducted
in the iRoom include our own project
group meetings, student project groups in
courses, construction management meet-
ings, brainstorming meetings by design
firms, and training-simulation meetings for
school principals.

Large high-resolution displays
We were initially motivated to take

advantage of interaction with large high-res-
olution displays. In a meeting, the presenter
or facilitator focuses on the board’s contents
and on the other participants. Using a key-
board is distracting, so we designed methods

for direct interaction with a pen or with
direct touch on the board. The interactive
mural is too large for today’s touch-screen
technologies, so we tested both laser and
ultrasound technologies10 as input devices.
The current system uses an eBeam ultrasonic
pen augmented with a button to distinguish
two modes of operation, one for drawing
and one for commands. The eBeam system
does not currently support multiple simul-
taneous users.

We wanted to combine the benefits of
two research threads in our interface:
whiteboard functionality for quick sketch-
ing and GUI functionality for applications.
We developed the PostBrainstorm inter-
face11,12 to provide a high-resolution dis-
play that has the ability to intermix direct
marking, image control, 3D rendering, and
arbitrary desktop applications. Our key
design goal was to provide fluid interac-
tion that would not divert user focus from
person-to-person interaction. This goal led
to developing several new mechanisms:

• FlowMenu is a contextual pop-up menu
system that combines the choice of an
action with parameter specification in a
single pen stroke, which makes it possi-
ble to avoid interface modes that can dis-
tract users not devoting their full atten-
tion to the interface.13 Because the menu
is radial rather than linear, multilevel
operations can be learned as a single
motion path or gesture; in many cases
the user does not even need to look at
the menu to select an action.

• ZoomScape is a configurable warping
of the screen space that implicitly con-
trols an object’s visible scale. The object
retains its geometry while being scaled
as a whole. In our standard configura-
tion, the top quarter of the screen
reduces the object size. An object can be
moved out of the main area of the screen
and reduced, providing a fluid mecha-
nism to manage screen real estate with-
out requiring explicit commands.

• Typed Drag-and-Drop is a handwriting
recognition system that runs as a back-
ground process, leaving the digital ink
and annotating it with the interpreted
characters. Through FlowMenu com-

mands, you can specify a sheet of writing
to have a desired semantic and then drag
it onto the target object to have the
intended effect. This provides a crossover
between simple board interaction and
application-specific GUI interactions.

Several groups of industrial designers from
two local design firms (IDEO and Speck-
Design) tested the system. Their overall
evaluation was positive11 and alerted us to
specific areas needing improvement. In
addition to experimenting with these facil-
ities on the high-resolution interactive
mural, we ported them to a standard Win-
dows systems and used them on the nor-
mal touch screens in the iRoom.

Room-based cross-platform interfaces
One obvious advantage of working in a

room-based environment is that people
share a common model of where devices
are positioned, which they can use as a con-
venient way of identifying them. Our room
controller (see Figure 3) uses a small map of
the room to indicate the lights, projectors,
and display surfaces. We use simple toggles
and menus associated with objects in the
map to switch video inputs to projectors
and to turn lights and projectors on or off.

Initial versions of this controller were
built as standard GUI applications, which
could only run on some systems. We broad-
ened their availability to a wider range of
devices by providing them as Web pages
(using forms) and as Web applets (using
Java). Our later research generalized the
process with iCrafter.7 The room-control
system stores the geometric arrangement of
screens and lights in the room in a config-
uration file and will automatically provide
controllers on any device supporting a UI
renderer available through iCrafter. Figure
3 shows examples for several devices.

In addition to providing environment
control, the same room control interface
serves as the primary way to move infor-
mation onto displays. The user indicates an
information object (URL or file), the appro-
priate application to display it, and the dis-
play on which it should appear using the
interface on their device. The user actions
generate an event that is picked up by a dae-

APRIL–JUNE 2002 PERVASIVEcomputing 75

mon running on the target machine, which
then displays the requested data.

Room-based input devices
In an interactive workspace, physical

input devices belong to the space rather
than a specific machine. We implemented
an overhead scanner based on a digital
camera. This scanner lets users digitize
sketches and other material placed in a cer-
tain area of the table. This provided an
alternative to sketching on tablet comput-
ers, which had the wrong feel when used
by a team of brainstormers. The overhead
scanner provides a method to bring tradi-
tional media into the space in a manner
that has low cognitive overhead.

In addition to the overhead scanner, we
introduced other devices, such as a bar-
code scanner and simple wireless input
devices, such as buttons and sliders. We
used the bar-code scanner, for example, to
implement a system similar to the Blue-
Board system.14 When the bar-code scan-
ner posts an event, the application checks
a table of codes registered to individual
iRoom users; if there is a match, it posts
the user’s personal information space to
one of the large boards. We can associate
handheld wireless iRoom buttons with any
actions through a Web-form interface. For
example, a push on a particular button can
bring up a set of predesignated applications
on multiple devices in the room.

Distributed application control
One aspect of the moving-control

modality for interactive workspaces is a
need for both direct touch interaction with

the GUIs on the large screens and the abil-
ity for users standing away from the
screens to control the mouse and enter text.
While it is possible to walk up to the screen
to interact or to request that the person at
the screen perform an action on your
behalf, both of these actions disrupt the
flow of a meeting. Several previous systems
have dealt with multiuser control of a
shared device, often providing sophisti-
cated floor-control mechanisms to manage
conflicts. In keeping with our keep-it-sim-
ple philosophy, we created a mechanism
called PointRight,15 which provides key
functionality without being intrusive.

With PointRight, any machine’s pointing
device can become a superpointer whose
field of operation includes all of the display
surfaces in the room. When a device runs
PointRight, the edges of its screen are asso-
ciated with other corresponding displays.
The user simply continues moving the cur-
sor off the edge of the local screen, and it
moves onto one of the other screens, as if
the displays in the room were part of a large
virtual desktop. In addition to allowing this
control through laptops, the room has a
dedicated wireless keyboard and mouse that
is always available as a general keyboard
and pointer interaction device for all of the
surfaces. For each active user, their key-
strokes go to the machine on which their
pointer is currently active.

Through calls to the Event Heap, inter-
face actions in one application can trigger
actions in another running on any of the
machines in the workspace. The Center for
Integrated Facility Engineering16 employed
this technique in a suite of applications

developed for use in construction-manage-
ment meetings. Figure 4 shows some of the
application viewers that they constructed.

All applications communicate through
the Event Heap and emit events in a com-
mon format and watch for events to which
they can respond. Users can coordinate the
applications by bringing them up on any
of the displays in an interactive workspace.
As users select and manipulate informa-
tion in one of the viewers, corresponding
information in the other viewers updates
to reflect changes. Because the components
are loosely coupled, the absence or disap-
pearance of an event source or event
receiver does not affect any of the applica-
tion components currently in use.

The Smart Presenter system lets users
construct coordinated presentations across
the displays in an interactive workspace.
Users create a script that determines the
content to display. PowerPoint and Web
pages are two of the supported formats,
but we can also use any other format that
the Data Heap supports. In addition to
content, we can send any arbitrary event
so it is easy to trigger lighting changes or
switch video inputs to a projector during a
presentation. Smart Presenter leverages the
Data Heap to insure it can show any dis-
play in the workspace. In the iRoom, for
example, the high-resolution front display,
which only supports JPEG images, can still
display PowerPoint slides because they are
extracted and transformed for that display.

Future directions
Several topics require additional inves-

tigation, including security, adaptation,
and bridging interactive workspaces. While
providing many important attributes, the
loose coupling model introduces some
security concerns. The indirect communi-
cation makes all messages public, which
makes it easy to adapt programs to work
with one another through intermediation
at the expense of privacy. For now, we have

76 PERVASIVEcomputing http://computer.org/pervasive

I N T E G R A T E D E N V I R O N M E N T S

Figure 3. Examples of iCrafter-generated
control interfaces: (a) Java Swing,
(b) Palm handheld, and (c) HTML.

(a) (c)(b)

a firewall between the iRoom and the rest
of the world and assume that users work-
ing together in a room have implicitly
agreed to public communication. We are
investigating the types of security that users
need in interactive workspaces, with the
hope of developing a social model for secu-
rity that will in turn help us to define the
appropriate software security protocols.

While our system tries to minimize the
amount of time required to integrate a
device into an interactive workspace, there
is still overhead in configuring room
geometries and specifying which servers to
use. We plan to make it simpler to create
and extend a workspace and to move
portable devices between them. Users
should only have to plug in a device or
bring it into a physical space for it to
become part of the corresponding software

infrastructure. User configuration should
be simple and prompted by the space. For
example, the user might have to specify
where in the room the device is located.
The logical extension of this is to allow ad
hoc interactive workspaces to form wher-
ever a group of devices are gathered.

Allowing project teams in remotely
located workspaces to work with one
another is both interesting and useful. The
main issues here include how to facilitate
coordination between desired applications
while insuring that workspace-specific
events remain only in the appropriate loca-
tion. For example, sending an event to turn
on all lights should probably remain only
in the environment where it was generated.
As we extend our research to multiple
linked rooms and remote participants, we
will use observations of users working in

these linked-spaces to determine how
much structure we need to add. We are dri-
ven not by what is technically possible, but
by what is humanly appropriate.

Akey design philosophy for our
project has been that the user
should have a minimum of spe-
cific controls and modes to

learn and remember, which means that the
interface should take advantage of natural
mappings to the physical structure. Al-
though it would be an overstatement to say
that the interface has become completely
intuitive and invisible, we continue to make
steps in that direction. As with all systems
built in relatively new domains, and par-
ticularly with systems that involve user

APRIL–JUNE 2002 PERVASIVEcomputing 77

Figure 4. Some of the viewers in the suite that the Center for Integrated Facility Engineering developed for construction-
management settings. Each would typically be run on its own display.

interaction, it is difficult to come up with
a quantitative measure of success.

We ran several experimental meetings,
including brainstorming sessions by pro-
fessional designers, construction of class
projects built on the iROS system, training
sessions for secondary school principals,
construction-management experiments for
a civil engineering research project, group
writing in an English course, project groups
from an interaction design course, and, of
course, our own weekly group meetings.
The overall results have been positive, with
many suggestions for further development
and improvement.

Comments from programmers who
have appreciated how easy it is to develop
applications with our framework are also
encouraging. The adoption and spread of
our technology to other research groups
suggests that our system is meeting the
needs of the growing community of devel-
opers for interactive workspaces. For more
information on the Interactive Workspaces
project and to download the iROS soft-
ware, visit http://iwork.stanford.edu.

ACKNOWLEDGMENTS
We thank Pat Hanrahan, one of the founders of the
project, for his support and efforts. The
accomplishments of the Interactive Workspaces
group are due to the efforts of too many to
enumerate here, but you can find a complete list
on the Interactive Workspaces Web site. DoE grant
B504665, NSF Graduate Fellowships, and
donations of equipment and software from Intel,
InFocus, IBM, and Microsoft have supported the
work described here.

REFERENCES
1. M. Weiser, “The Computer for the 21st Cen-

tury,” Scientific American, vol. 265, no. 3,
1991, pp. 66–75.

2. T. Kindberg and A. Fox, “System Software
for Ubiquitous Computing,” IEEE Perva-
sive Computing, vol. 1, no. 1, Jan./Feb.
2002, pp. 70–81.

3. B. Brumitt et al., “EasyLiving: Technologies
for Intelligent Environments,” Proc. Hand-
held and Ubiquitous Computing 2nd Int’l
Symp. HUC 2000, Springer-Verlag, New
York, 2000, pp. 12–29.

4. M.H. Coen et al., “Meeting the Computa-
tional Needs of Intelligent Environments:
The Metaglue System,” Proc. 1st Int’l Work-

shop Managing Interactions in Smart Envi-
ronments, 1999.

5. B. Johanson and A. Fox, “The Event Heap:
An Coordination Infrastructure for Interac-
tive Workspaces,” to be published in Proc
4th IEEE Workshop Mobile Computer Sys-
tems and Applications (WMCSA 2002),
IEEE Press, Piscataway, N.J., 2002.

6. N. Carriero and D. Gelernter, “Linda in
Context (Parallel Programming),” Comm.
ACM, vol. 32, no. 4, 1989, pp. 444–458.

7. S. Ponnekanti et al., “ICrafter: A Service
Framework for Ubiquitous Computing
Environments,” Proc. Ubicomp 2001,
Springer-Verlag, New York, 2001, pp.
256–272.

8. J. Waldo, “The Jini Architecture for Net-
work-Centric Computing,” Comm. ACM,
vol. 42, no. 7, 1999, pp. 76–82.

9. W. Adjie-Winoto et al., “The Design and
Implementation of an Intentional Naming
System,” Operating Systems Rev., vol. 33,
no. 5, Dec. 1999, pp. 186–201.

10.X.C. Chen and J. Davis, “LumiPoint: Multi-
User Laser-Based Interaction on Large Tiled
Displays,” Displays, vol. 22, no. 1, Mar.
2002.

11.F. Guimbretière, Fluid Interaction for High
Resolution Wall-Size Displays, PhD disser-
tation, Computer Science Department, Stan-
ford Univ., Calif., 2002.

12.F. Guimbretière, M. Stone, and T. Winograd,
“Fluid Interaction with High-Resolution
Wall-Size Displays,” Proc. of the ACM
Symp., ACM Press, New York, 2001, pp.
21–30.

13. J. Raskin, The Humane Interface: New
Directions for Designing Interactive Sys-
tems, Addison Wesley, Reading, Mass.,
2000.

14.D. Russell and R. Gossweiler, “On the
Design of Personal & Communal Large
Information Scale Appliances,” Proc. Ubi-
comp 2001, Springer-Verlag, New York,
2001, pp. 354-361.

15.B. Johanson, G. Hutchins, and T. Winograd,
“PointRight: A System for Pointer/Keyboard
Redirection Among Multiple Displays and
Machines,” tech. report CS-2000-03, Stan-
ford Univ., 2000; http://graphics.stanford.
edu/papers/pointri ht.

16.K. Liston, M. Fischer, and T. Winograd,
“Focused Sharing of Information for Multi-
disciplinary Decision Making by Project
Teams,” Proc. ITcon, vol. 6, 2001, pp.
69–81.

For more information on this or any other comput-
ing topic, please visit our digital library at http://
computer.org/publications/dlib.

78 PERVASIVEcomputing http://computer.org/pervasive

I N T E G R A T E D E N V I R O N M E N T S

Brad Johanson is a PhD candidate in the electrical engineering department at Stan-
ford University and is one of the student leads in the interactive workspaces project.
His research interests include genetic programming, computer networking, and
computer graphics. He received a BA in computer science and a BS in electrical engi-
neering and computer science from Cornell University, an MS in computer science
from the University of Birmingham in England, and an MS in electrical engineering
from Stanford University. Contact him at bjohanso@graphics.stanford.edu.

Armando Fox is an assistant professor at Stanford University. His research interests
include systems approaches to improving dependability and system software sup-
port for ubiquitous computing. He received a BS in electrical engineering from MIT,
an MS in electrical engineering from the University of Illinois, and a PhD in electrical
engineering from the University of California at Berkeley. He is a member of the
ACM and a founder of ProxiNet (now a division of PumaTech), which commercial-
ized the thin client mobile computing technology he helped develop at UC Berkeley.
Contact him at fox@cs.stanford.edu.

Terry Winograd is a professor of computer science at Stanford University, where he
directs the interactivity laboratory and the program in human-computer interaction
design. He is one of the principal investigators in the Stanford digital libraries project
and the interactive workspaces project.

the AUTHORS

