
Modeling eHome Systems

Ulrich Norbisrath
Department of Computer Science 3

RWTH Aachen University
Ahornstr. 55, 52074 Aachen, Germany

uno@i3.informatik.rwth-aachen.de

Ibrahim Armac
Department of Computer Science 3

RWTH Aachen University
Ahornstr. 55, 52074 Aachen, Germany

armac@i3.informatik.rwth-aachen.de

Daniel Retkowitz
Department of Computer Science 3

RWTH Aachen University
Ahornstr. 55, 52074 Aachen, Germany

retkowitz@i3.informatik.rwth-aachen.de

Priit Salumaa
Playtech Estonia O -U

Emaj~oe -arikeskus, Soola 8, 51013 Tartu, Estonia

priit.salumaa@playtech.com

ABSTRACT
New developments and decreasing costs of electronic appliances
enable the realization of pervasive systems in our daily environ-
ment. In our work, we focus on eHome systems. The cost-intensive
repetitive development process for every new eHome environment
is one of the major problems preventing their widespread use. So,
we transformed the repetitive development process to a single one,
followed by a repetitive configuration process. To support this
configuration process, we introduce a model capable of storing all
the parameters relevant for this specific process. To enable semi-
automatic configuration based on the model, a specification is re-
quired beforehand. In this paper, we will show how the neces-
sary specification is covered by the introduced model, and how the
model supports the eHome system configuration and context infer-
ring at runtime.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software config-
uration management; D.2.1 [Software Engineering]: Require-
ments/Specifications—Methodologies; D.2.12 [Software Engi-
neering]: Software Architectures—Domain-specific architectures;
J.7 [Computer Applications]: Computers in other systems—Con-
sumer products

General Terms
Design

Keywords
Smart home, model, object oriented, pervasive computing, context-
aware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MPAC ’06, November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-421-9/06/11 ...$5.00.

1. INTRODUCTION
The market already offers a wide range of appliances usable in

home automation environments. Affordable examples are: X10 ap-
pliances, standard USB devices, or Connex appliances. From this
point of view, the hardware for the realization of smart home envi-
ronments is already available at reasonable costs. Various setups of
such smart home environments prove the applicability in practice.
We call those environments eHomes or eHome systems [?, ?, ?].
All these implementations are either research or hobby projects.
The question arising is: What is missing to make eHomes more
widespread? We believe that the main obstacle preventing eHomes
from becoming more widely used is the relatively high price of
the software driving the eHome, since it needs to be developed or
adapted for each particular eHome. A complete software develop-
ment process per case is not affordable for everyone [?].

In our process, the development of eHome services has to be
done only once for all regarded environments. The repetitive por-
tion is reduced to the level of mere specification of the target en-
vironment, as well as interactive configuration of the given service
components for the eHome system, with no coding overhead. In
our approach, the eHome services are implemented as OSGi [?]
bundles using the object-oriented programming language Java [?].
OSGi allows for developing service-oriented software components,
respective OSGi frameworks provide an execution environment for
OSGi bundles and also manage the lifecycle of the software compo-
nents. Our goal is the support of composition and configuration of
services for eHome systems. In this context, we introduce a Speci-
fication, Configuration, and Deployment process. We will refer to
this process as the eHome SCD-process.

The reason for developing the SCD-process for eHome sys-
tems is to establish a low cost process to introduce eHomes to a
wider constituency. To support the SCD-process, we developed an
eHome model, which is the main focus of this paper. The eHome
model specifies a graph-based data structure which is used in the
SCD-process. As the name of the SCD-process indicates, the pro-
cess consists of three phases. All three phases are supported by the
eHome model.

In the specification phase, the eHome environment and the re-
quired services are specified. During this phase, the architectural
information about the eHome is captured. The given appliances
and their location in the home environment are described. Along
with the eHome environment, the services used later in this envi-
ronment, plus the required devices and functionalities, need to be

defined and specified once beforehand.
In the configuration phase, the services selected in the specifica-

tion phase are automatically adapted to the specified environment.
This means that necessary appliances are added to the configura-
tion. Likewise, required sub-services that are missing are selected
to match the functional requirements of the selected services. For
example, if the lighting service needs at least one lamp per room
and one switch to control the lamp, these devices will be added to
the configuration. Furthermore, the corresponding driver compo-
nent services for the lamp and switch controllers are added to the
configuration.

In the deployment phase, the service configuration is deployed,
i.e., the software components specified and configured during the
first two phases are deployed automatically onto the service gate-
way residing in the eHome. The software components are also ini-
tialized properly and launched automatically.

The details of the three phases mentioned above would go be-
yond the scope of this paper, as we want to focus on the eHome
model here. An in-depth presentation of the SCD-process can be
found in [?]. The eHome model will be described in detail in the
following section.

2. THE EHOME MODEL
The whole SCD-process is strongly related to the eHome model.

The eHome model comprises all the information necessary for sup-
porting the SCD-process and execution of the eHome services at
runtime. It contains several contexts to model the different as-
pects of eHome systems. These are the functionality context, device
definition context, environment context, service context, service in-
stance context, and person context.

The instanced model is actively involved during the runtime of
the eHome system as it provides information about the home en-
vironment for eHome services. This enables the development of
context-aware eHome services which need the real-time informa-
tion about the inhabitant’s location, and the states of other services,
or appliances. In other words, the eHome model instance is also
a communication medium for eHome services (a similar communi-
cation approach is also followed by [?]).

The eHome model is being developed by using the Fujaba tool
suite [?]. Fujaba enables the development of an object-oriented
model and the generation of fully executable Java code for the
model. The model has its statics and dynamics. The static struc-
ture is designed using a UML class diagram describing the classes
of the model and their relations to each other. During runtime, the
objects of the model classes are created according to the structure
of the class diagram. For more details see [?].

In the following subsections we will describe the details of the
different contexts mentioned before. All contexts are interrelated
and form together the eHome model. However, they will be pre-
sented separately to emphasize the context-specific details.

2.1 Functionality Context
The smallest but one of the most important contexts of the

eHome model is the part describing functionalities of the services,
as well as the appliances (see Figure ??). The functionalities are
described by means of the Function class which has a reflexive
relation describing that one functionality can be refined by another
one. For example, a detection functionality can be refined by the
functionalities: movement detection, smoke detection, glass break-
age detection, etc. This reflexive relation of the Function class
results in a tree structure of objects from this class. Functionali-
ties are defined by their names and the refinement relation of the
functionalities should be used in such a way that the most general

0..n

refines
0..1

collapsed

String : name

Function

Figure 1: The functionality context

0..n 0..1

0..n

1

is instantiated as

0..n

0..1

has

has

collapsed

String : name
Boolean : existing
String : address

Device

collapsed

ValueHolder : value
String : name

Attribute

collapsed

Integer : numberOfVirtualDevices
String : name

String : manufacturer

DeviceDefinition

Figure 2: The device definition context

functionality is the root of the tree and the most specific function-
alities are the leaves of the tree.

2.2 Device Definition Context
The devices used in the environment specification phase of the

SCD-process are predefined. Therefore, before a device can be
added to the eHome, it must be specified in terms of a device def-
inition, which includes the manufacturer information, the name of
the device, and further device-specific attributes. Attributes can
have an arbitrary structure suitable to store the necessary infor-
mation. Therefore, the Attribute class contains an abstract
ValueHolder that can be extended to encapsulate arbitrary data
types. A concrete device is specified in the environment as an in-
stance of the device definition, identified using specific attributes,
like addresses (IP address, house code for X10, USB address, etc.),
and recognizable names. In Figure ??, the device definition is rep-
resented by the DeviceDefinition class. The concrete device,
as the instance of its definition, is represented by the Device class.
The attributes are represented by the Attribute class; it will also
be used in further contexts, as we will see later.

The functionalities provided by the devices are important for the
SCD-process. Nevertheless, they are not specified in the device
definition but in specification of the corresponding device driver
services. This is due to the fact that the hardware itself, as well as
the physical connections, have no significant role in the software
configuration step during the SCD-process. The configuration is
done using the corresponding software components only.

2.3 Environment Context
The environment context models the location information ac-

cording to the floor plan of the home and the given appliances. It
can provide a set of different environments which are connected
via locations or location elements for the eHome. For example, a
house can be connected with an external garage, by a hall or just
a door. There is also a sub-location concept implemented. A floor

0..n

0..n

0..n

1..n

contains

0..n

0..n

contains

0..n1

contains

collapsed

Environment

collapsed

String : name

EnvironmentElement

collapsed

collapsed

Device

LocationElement

sub-location

collapsed

Location

Figure 3: The environment context

Figure 4: The service context

can have its rooms as sub-locations or a room can have different
service-related areas near the windows, doors or a TV set. This
kind of modeling freedom and generality gives us a mechanism that
is powerful enough to express any kind of architectural designs.

The environment context has the EnvironmentElement
class as a super-class for any other class describing location in-
formation of the home (see Figure ??). EnvironmentElement
aggregates the common features of the classes describing the home
environment. Since the classes Environment, Location, and
LocationElement inherit from it, they have a relation to the
Device class. This means that every element in the environment
context can have appliances related to them. For example, in the
living room, there can be a lamp, a media set with speakers and an
LCD screen, controlling switches, etc.; the door in the room can
have a movement detector attached to it; and the window can have
a glass breakage detector attached to it.

Environments, locations, and connecting location elements can
form a complex graph that represents the logical connections in
an architectural design. The connections describe the relations be-
tween the entities in the architectural design, thus modeling also
the three dimensional relations in the building. An example of an
environment is depicted in Figure ??.

2.4 Service Context
The service context of the eHome model represents eHome ser-

vice descriptions, or more accurately, the definitions of eHome ser-
vices. It is crucial for the SCD-process that the eHome service
software components configured during the automatic configura-
tion phase are modeled beforehand, since the automatic configu-
ration relies on the abstract description of the eHome service soft-
ware. The service context does not include the runtime configu-
ration of the selected services, which has to be deployed onto the
service gateway in the eHome during the deployment phase of the
SCD-process.

Figure ?? outlines the service context. The service is modeled
by the Service class, which not only contains information such
as the id, name, type, and description of the service, but also the in-
formation on the resource URI of the corresponding software com-
ponent installed during the deployment phase. The Service class
is an abstract description of the corresponding software component
executed during the runtime of the eHome system.

The essential part of the service description is specified by func-
tionalities. The Service class has three indirect relations to the
Function class over the ServiceFunctionCardinality
class. A service is described by the functionalities it provides, re-
quires, and optionally requires. As mentioned before, the func-
tionalities of the devices are considered to be part of the device
driver services. The functionalities allow for a dynamic composi-
tion and dependency resolution during the automatic configuration
step, forming an abstraction layer for service composition.

The ServiceFunctionCardinality class is also used by
the service requirements. The cardinality at the required service in-
dicates the quantity of the functionality required. Figure ?? shows
the Switch service controlling an on/off switch that can be used
by a two level heating service. This service would require the
switching functionality with cardinality “2”, because the first
switch is used to turn on and off the radiators on the walls, and the
second switch is to turn on and off the floor heating. If the heat-
ing service is installed in a location, there will be two Switch
service instances added into the configuration, as well as two tog-
gle switch devices at the corresponding location. If some other
Switch service offered the switching functionality with a car-
dinality greater than or equal to “2”, the heating control service
would only need one instance of this kind of Switch service. If
the Switch service offers the switching functionality with a
cardinality greater than “2”, the same instance could be used by
other services requiring the switching functionality.

The Service class has two relations to the Attribute class.
These two relations model the global and the specific attributes.
Global attributes are valid for the complete eHome environment,
while specific attributes may differ from location to location.

Services are related to the environment information. The relation
between an EnvironmentElement and a Service class im-
plies that the environment element offers a service for the eHome
inhabitants. This relation is typically used for locations. The links
between locations and services are created when the given service
is selected during the specification phase of the SCD-process.

The Service class and DeviceDefinition class are re-
lated, as the devices are controlled by the software. This is the case
for services which in fact are the driver components of devices. The
device driver component provides the other services or the end-user
with functionalities attributive to the controlled device. However,
devices as such have no great significance for the automatic config-
uration phase of the SCD-process. An example of a device driver
service is presented in Figure ??.

Figure 5: The necessary devices in the eHome environment sup-
porting the Music Follows Person service

Figure 6: The specification of the Switching service to control a
toggle switch

2.5 Service Instance Context
While the service context models a service by its functional-

ity dependencies, the service instance context models the runtime
configuration of services in the eHome system. During the con-
figuration step of the SCD-process, the parts of the eHome model
instance corresponding to this context are built automatically. To
give a better overview, the service instance context is depicted on
two figures ?? and ??.

According to Figure ??, the ServiceObject class models the
service instance and has a relation to the Service class, indicat-
ing which service is instantiated. The idea of the service instan-
tiation is to assign a ServiceObject with its specific configu-
ration to every EnvironmentElement which provides the se-

is instantiated as uses

0..n

0..n

0..n

1

collapsed

ServiceObject

collapsed

collapsed

Service

Figure 7: The relation between service and service instance

0..n

uses

1

has serv. obj.

0..1

0..n

0..n

0..n

1

0..n

0..n

0..1

has

collapsed

String : name

EnvironmentElement

0..n

0..n

0..n 0..n

0..n

collapsed

ServiceObject

has runtime component
has

has

controls

Boolean :) (init
Boolean :)ServiceObject:so (execute

EhService

«interface»

collapsed

collapsed

Device

collapsed

Attribute

Value... : value
String : name

State

contains

Figure 8: The service instance context

lected Service. Thus, Figure ?? shows a relation between the
ServiceObject and the EnvironmentElement class. The
is in relation corresponds to the relation offers in Figure ??.

The most important relation in the service instance context for
the configuration step in the SCD-process is the self-relation uses
of the ServiceObject class. This relation expresses the usage
relation between the services during runtime. In the service con-
text, there is no explicit relation between the services. The reason
for that is to use the functionality abstraction around the services
for the service composition to enable automatic configuration of
the services during the SCD-process.

The service instance context is filled with objects and data during
the configuration step of the SCD-process. The tools supporting the
automatic configuration take into account the selected services and
their functionality requirements, and then compose a suitable set
of services to meet the requirements of the services selected by the
user. The usage relations between the services are expressed explic-
itly. The composition uses the indirect provides, requires,
and optionally requires relations between the Service
class and the Function class (see Figure ??). These relations are
used to construct a usage and dependency graph of the service in-
stances, expressing the runtime structure and the configuration of
the eHome services in the eHome system.

2.6 Person Context
In the person context, the person-related information in eHomes

is modeled. Information about the person plays an essential role
during the runtime of the eHome system, for example, when com-
municating information about the inhabitant’s location to the ser-
vices. Person related information is also important for other eHome
processes, such as business processes [?] and possible migra-
tion of services between different eHome environments. For those
reasons, the person related information is modeled in the eHome
model.

Figure ?? presents the class Person, modeling the most impor-
tant properties of the person under consideration. The relation is
in between the classes Person and Location represents the
location information of the inhabitant describing where the person
is currently located. This information is needed for the services
which require information about the location of the people in the
eHome. The implementation of person-related eHome services is
supported by the uses relation between Person and Service.
Furthermore, persons can also have attributes to store personal pro-
files.

uses 0..n

0..n

0..n

0..1

has

0..n 0..n

is in

collapsed

Person

collapsed

Location

collapsed

collapsed

Attribute

collapsed

collapsed

Service

Figure 9: The person context

Figure 10: A section of the eHome model instance

2.7 Example: Music Follows Person
As aforementioned, the eHome model supports all phases of the

SCD-process. We developed a tool called eHomeConfigurator [?,
?] that is based on the eHome model and supports users carrying
out tasks for the whole SCD-process. First, a service provider can
use the eHomeConfigurator to specify the services he offers and
the device types he supports. A customer can use the same tool to
specify his home environment with the concrete devices he owns.
After selecting the desired services, he can initiate their configura-
tion. Based on the provided and required service functionalities,
the services are composed and the attributes are assigned to con-
crete values by the eHomeConfigurator. Now, there is an instance
of the eHome model that contains all necessary information for the
automatic deployment, that in turn generates the service instance
related information.

As an example of the SCD-process, we consider a small apart-
ment, consisting of a hall, a bathroom, a living-room, and a bed-
room. The living-room has a small kitchen corner for cooking (see
Figure ??). We assume that a student couple is living in this apart-
ment. These students want to listen to their favorite music every-
where in the apartment, for instance while taking a bath. Nearly
all of their music collection is on the PC. They would like to have

the following feature: if a particular person listens to the music,
the music played at the time will follow the person from room to
room. Yet, we use a simple strategy to resolve conflicts occurring
when two persons meet in the same room: The music of the person
entering last will be played.

Figure ?? illustrates a section of the fully configured eHome
model instance during runtime for our example described above.
Depicted is just the part relevant for the living room, pro-
viding the Music Follows Person service, and the corre-
sponding relations between the objects and the environment el-
ement Living-room. We see the dependencies of the ser-
vice objects: Music Follows Person - object uses the
Person Detector - object, which is using Switch -
object and Motion Controller - object. This com-
position has been automatically generated using the provided and
required functionalities of the corresponding services. Attributes,
such as the IO16-Port Number of a switch, are connected to
services and devices. Furthermore, services may also have states,
which are similar to attributes, but are changeable runtime proper-
ties. An example for a state is the person state that indicates
which person has been detected in the living room.

3. RELATED WORK
Arroyo et al. propose a task-driven design model for ambient

intelligent systems [?]. It allows the representation of concepts
such as tasks and laws, and physical objects such as devices needed
for tasks, as well as computers or humans carrying tasks out. The
communication is realized on top of a blackboard, storing the in-
formation of the whole system. This allows for a very flexible way
of communication, as every part is just responsible for the part of
the blackboard handled by itself. The modeling of abstract tasks,
physical objects, and relations is very similar to our model. But
the model proposed in that paper is up to now not embedded in a
development and configuration process, and so will not solve the
effort arising from the creation of service components, resolving
of dependencies, and finding necessary parameters for the context.
In terms of contracts for components, their model offers a higher
expressiveness which could be used as a base for our future work.

For our model, we can rely on results from the conceptual build-
ing design approach [?, ?], which represents a link from software
engineering to civil engineering. When designing a building, an ex-
perienced architect implicitly applies his aggregated knowledge to
the new sketch. Constructive elements, such as walls, windows, or
doors are used with their conceptual meaning, namely to form or-
ganizational areas or rooms, to guarantee e.g. light and ventilation,
or to ensure accessibility. These conceptual elements form a func-
tional view on the future building. At this early design stage, called
conceptual design, most architects work with pencil and paper, as
there is no support for this stage by current CAD system. The con-
ceptual information he/she had in mind gets lost. This information
would form a very valuable input for our automation approach. We
are going the reverse way, since our SCD tools allow an a posteriori
specification of the details lost from the conceptual design phase.

The Java Context Awareness Framework, or in short JCAF [?],
is a Java framework which offers a set of interfaces to support the
development of context-aware applications. JCAF’s main features
can be summarized as follows: It is a framework which was de-
signed specifically for event-based applications. This also includes
services which usually react to events triggered by sensor-devices
in the eHome environment. It supports distributed and cooperating
services, i.e. it provides methods of inter-process communication.
JCAF also offers a set of security features to restrict access to sen-
sor data and actuator control. It provides methods to verify the

origin of incoming events. The last main feature concerns starting,
modifying, and stopping software without the need to restart the
whole framework.

4. CONCLUSION & OUTLOOK
This paper gave an overview of the SCD-process for eHome sys-

tems and discussed thoroughly the eHome model and its structure.
The eHome model is used to support the SCD-process by covering
all the necessary contexts relevant for inferring information during
configuration and runtime of eHome systems. The introduced con-
texts are the functionality, device definition, environment, service,
service instance, and person contexts. The music follows person
example illustrated the application of the proposed eHome model.
This model is actively used in our group for automatic configu-
ration and deployment of different demonstration environments.
These have been demonstrated for example in [?, ?].

The idea of automatic configuration is simple because of the
functional abstraction layer it uses. But it still lacks the rigorous
mechanism for composition verification on the software component
level. The automatic configuration does not check formally if the
combined components actually work together and will give a rea-
sonable result during runtime. This issue and QoS aspects could be
addressed e.g. using parametric contracts [?]. This kind of addition
would help verifying the composition verification and composing
the components produced by different software manufacturers.

Further future work includes the extension of the SCD-process
and of the eHome model for connecting multiple environments
and, thus, supporting mobility of users and services between dif-
ferent environments, like home, car, work place etc. This includes
especially the person identification and the location awareness of
eHome services. Another extension of the model will cover spatial
aspects between environment elements enhancing the connection
information. Also dynamics of appliances appearing and disap-
pearing in the home will be addressed in future work. Currently, we
are working on device discovery and the automatic integration of
the identified devices into the configuration. Additionally, we will
work on the definition of a services concept for eHomes, like how
services can be classified: person-related, location-related, infor-
mational etc. Last but not least, we are working on the integration
of a security and privacy concept for our eHome prototype.

5. REFERENCES
[1] Ibrahim Armac and Michael Kirchhof. Process Support in

Ehome Systems: Empowering Providers to Handle a Future
Mass Market. In Thibaud Latour and Michaël Petit, editors,
Proceedings of the CAiSE’06 Workshops and Doctoral
Consortium, pages 219–228. Presses Universitaires de
Namur, 2006. Workshop: UMICS’06.

[2] R. F. Arroyo, M. Gea, J. L., and P. A. Haya. A Task-Driven
Design Model for Collaborative AmI Systems. In Thibaud
Latour and Michaël Petit, editors, Proceedings of the
CAiSE’06 Workshops and Doctoral Consortium, pages
969–983. Presses Universitaires de Namur, 2006. Workshop:
UMICS’06.

[3] Jakob Eyvind Bardram. The java context awareness
framework (JCAF) – A service infrastructure and
programming framework for context-aware applications. In
Hans Gellersen, Roy Want, and Albrecht Schmidt, editors,
Proceedings of the 3rd International Conference on
Pervasive Computing (Pervasive 2005), lncs, Munich,
Germany, May 2005. Springer Verlag.

[4] Beisheim Holding GmbH. FutureLife – Das Haus der
Zukunft. http://www.futurelife.ch/.

[5] David Flanagan. Java in a Nutshell. O’Reilly, 5th edition
edition, March 2005.

[6] inHaus Duisburg. Innovationszentrum Intelligentes Haus
Duisburg. http://www.inhaus-duisburg.de.

[7] Michael Kirchhof, Ulrich Norbisrath, and Christof
Skrzypczyk. Towards Automatic Deployment in eHome
Systems: Description Language and Tool Support. In Robert
Meersman and Zahir Tari, editors, On the Move to
Meaningful Internet Systems 2004: CoopIS, DOA, and
ODBASE: OTM Confederated International Conferences,
Proceedings, Part I, number 3290 in LNCS, pages 460–476.
Springer, 2004.

[8] Bodo Kraft, Oliver Meyer, and Manfred Nagl. Graph
technology support for conceptual design in civil
engineering. In M. Schellenbach-Held and H. Denk, editors,
Int. Workshop of the European Group for Intelligent
Computing in Engineering (EG-ICE 2002), pages 1–49. VDI
Fortschritt Berichte, 2002.

[9] Bodo Kraft and Manfred Nagl. Semantic tool support for
conceptual design. In I. Flood, editor, Proceedings of the 4th
Int. Symposium on Information Technology in Civil
Engineering, pages 1–12, 2003.

[10] Ulrich Norbisrath and Christof Mosler. Functionality
Configuration for eHome Systems. In CASCON ’06:
Proceedings of the 2006 conference of the Centre for
Advanced Studies on Collaborative research. IBM Press,
2006. accepted for publication.

[11] Ulrich Norbisrath, Priit Salumaa, and Adam Malik.
eHomeConfigurator. http:
//sourceforge.net/projects/ehomeconfig.

[12] Ulrich Norbisrath, Priit Salumaa, Erhard Schultchen, and
Bodo Kraft. Fujaba based tool development for eHome
systems. In Proceedings of the International Workshop on
Graph-Based Tools (GraBaTs 2004), volume 127 of
Electronic Notes in Theoretical Computer Science, pages
89–99. Elsevier, 2005.

[13] Ralf H. Reussner, Steffen Becker, and Viktoria Firus.
Component composition with parametric contracts. In
Proceedings of the Net.ObjectDays, pages 155–169, 2004.

[14] Tampere University of Technology, Personal Electronics
Group. Smart Home Project. http://www.ele.tut.
fi/research/personalelectronics/
projects/smart_home.htm.

[15] The OSGi Alliance. OSGi Service Platform Core
Specification. http://www.osgi.org/osgi_
technology/download_specs.asp#Release4,
August 2005. Release 4.

[16] Ulrich Norbisrath, Priit Salumaa, Adam Malik. Specification,
Configuration, and Deployment in eHome Systems.
http://math.ut.ee/˜peeter_l/seminar/
eelmised/05k/ehome.html.

[17] Ulrich Norbisrath, Priit Salumaa, Adam Malik. eHome
Specification, Configuration, and Deployment.
http://ubicomp.org/ubicomp2005/programs/
demos.shtml, 2005. Demonstration Paper D15 on
UbiComp2005.

[18] Albert Zündorf. FUJABA (From UML to Java and Back
Again). http://www.fujaba.de.

http://www.futurelife.ch/
http://www.inhaus-duisburg.de
http://sourceforge.net/projects/ehomeconfig
http://sourceforge.net/projects/ehomeconfig
http://www.ele.tut.fi/research/personalelectronics/projects/smart_home.htm
http://www.ele.tut.fi/research/personalelectronics/projects/smart_home.htm
http://www.ele.tut.fi/research/personalelectronics/projects/smart_home.htm
http://www.osgi.org/osgi_technology/download_specs.asp#Release4
http://www.osgi.org/osgi_technology/download_specs.asp#Release4
http://math.ut.ee/~peeter_l/seminar/eelmised/05k/ehome.html
http://math.ut.ee/~peeter_l/seminar/eelmised/05k/ehome.html
http://ubicomp.org/ubicomp2005/programs/demos.shtml
http://ubicomp.org/ubicomp2005/programs/demos.shtml
http://www.fujaba.de

