
End-user Customisation of Intelligent
Environments

Jeannette Chin, Victor Callaghan and Graham Clarke

1 Introduction

One of the striking aspects of world-wide-web is how it has empowered ordinary
non-technical people to participate in a digital revolution by transforming the way
services such as shopping, education and entertainment are offered and consumed.
The proliferation of networked appliances, sensors and actuators, such as those
found in digital homes heralds a similar ‘sea change’ in the capabilities of ordinary
people to customise and utilise the electronic spaces they inhabit. By coordinating
the actions of networked devices or services, it is possible for the environment to
behave in a holistic and reactive manner to satisfy the occupants needs; creating
an intelligent environment. Further, by deconstructing traditional home appliances
into sets of more elemental network accessible services, it is possible to reconstruct
either the original appliance or to create new user defined appliances by combin-
ing basic network services in novel ways; creating a so called virtual appliance.
This principle can be extended to decompose and re-compose software applications
allowing users to create their own bespoke applications. Collectively, such user cre-
ated entities are referred to as Meta – appliances or – applications, more generally
abbreviated to MAps.

Deconstruction and user customized MAps raise exciting possibilities for oc-
cupants of future intelligent environments, and sets significant research challenges
[14]. For example, how can MAps be constructed and managed by ordinary non-
expert home occupants? At one extreme it is possible to use artificial intelligence
(AI) techniques and equipment, such as autonomous intelligent agents. These mon-

Jeannette Chin
University of Essex, e-mail: jschin@essex.ac.uk

Victor Callaghan
University of Essex, e-mail: vic@essex.ac.uk

Graham Clarke
University of Essex, e-mail: graham@essex.ac.uk

H. Nakashima et al. (eds.), Handbook of Ambient Intelligence and Smart Environments, 371
DOI 10.1007/978-0-387-93808-0_14, © Springer Science+Business Media, LLC 2010

372 Jeannette Chin, Victor Callaghan and Graham Clarke

itor an occupants habitual behaviour, modelling their behaviours, and creating rule-
based profiles (self-programming) so they can pre-emptively set the environment to
what they anticipate the user would like [1]. However, some people have privacy
concerns about what is being recorded, when it is being recorded and to whom (or
what) any information is communicated. These concerns are particularly acute with
autonomous agents, in which people have little direct control. Such matters are es-
pecially sensitive when the technology is used in the private space of someone’s
home. Frequently, end-users are given very little choice in setting-up digital home
technology and are obliged to accept whatever is offered [10]. Apart from the issues
of privacy and trust, we argue that creativity is an essential and distinctive human
quality, and that many people would enjoy the process of creating their own novel
networked appliances and personalising their ’electronic spaces’, providing they can
be shielded from unnecessary technical complexity. This has parallels to the com-
mon practice of people decorating their own homes with paintings, walls hangings,
pictures, colour schemes and furniture. This rationale has led many researchers to in-
vestigate what is termed ‘end-user programming’, a methodology aimed at allowing
non-technical people to personalise their own digital spaces with network enabled
embedded-computer based devices. Historically, programming has only been acces-
sible to well-qualified professionals, such as computer scientists, or the outcome of
self-programming (learning) using autonomous intelligent agents. The challenge for
achieving an end-user programming vision is to devise programming methodologies
that are usable by non-technical people.

In this chapter we begin by reviewing current research into end-user program-
ming systems, especially those for the home. We describe approaches that range
from transposing conventional programming constructs into graphical or physical
iconic objects, to those that adopt radically new programming metaphors. By way
of an example of these new approaches, we describe a novel end-user program-
ming approach developed at the University of Essex called Pervasive-interactive-
Programming (PiP) (UK patent No. GB0523246.7) and a service coordination
model known as Meta-Appliances/Applications (MAps). We report on an evalua-
tion of user experiences using PiP in a digital home, the University of Essex iSpace.
We conclude this chapter by reflecting on the main findings of our work.

2 The Home of the Future – A Vision

One vision for the home of the future is that it will be will be a technology-rich
environment containing tens or even hundreds of pervasive network based services,
some provided by physical appliances within the home, others by external service
providers (see Figure 1). It will be centred on the concept of aggregating network
services to satisfy particular needs. A supporting middleware will make these ser-
vices discoverable, and accessible to the user in the environment in which they
reside. Services might range from simple video entertainment streams through to
complex home energy management packages.

End-user Customisation of Intelligent Environments 373

Fig. 1 A Pool of Service Providing Appliances

In the current market appliances are designed, packaged and marketed by com-
mercial companies who bundle together pre-formed packages of functions that they
anticipate customers will want (e.g. a TV). However, networked technology en-
ables the development of alternative approaches. For example, from a customer’s
perspective, it might be possible to create network based appliance or environment
behaviour by aggregating coordinating sets of networked services. Formal descrip-
tions of these composite services, and their behaviours would form ‘soft-objects’
which could migrate with people as they move across differing environments (e.g.
via the network, or contained in mobile phones), instantiating these functions from
local resources wherever possible. The current appliance market suggests that there
is a basic set of common needs for devices that people want (eg telephones, TVs,
heating etc) and these could form default MAps in all homes. However other, more
novel, MAps – composite service descriptions – created by lay-people could be
developed for personal use or even traded. Clearly, the deconstructed model, repre-
sents a radically different way of providing appliances and it is not yet clear, that
the market would accept such a proposition. However, even if this vision for ‘vir-
tual appliances’ does not find favour in the market, it remains an alternative way for
end-users to personalise the functionality of their digital homes.

3 Contemporary Work

Various approaches to customising digital homes have been reported by researchers,
ranging from intelligent agents through to user driven methods. A common ap-

374 Jeannette Chin, Victor Callaghan and Graham Clarke

proach to endowing network appliances with coordinated behaviour is via rules [8].
Rules are fundamental to determining how a given appliance or service interacts
with other appliances or services [50]. Chin [13] has proposed a taxonomy based
on ‘rule formation’ as a way of describing the different rule-based approaches to
customizing digital homes. Chin’s taxonomy is based on the following categories:

1. Pre-programmed rules - usually created by the developers or manufacturer,
2. Agent-programmed rules - created from intelligent agents, artificial intelligence

or machine learning mechanisms, and
3. User-programmed rules - created from end-user programming.

3.1 Pre-programmed Rules

This grouping describes systems where a developer or manufacturer fixes the rules
for coordination before they are supplied to the end-users. Here professional de-
velopers try to anticipate the future use of the systems e.g. what devices will work
together, what functionality the users will require etc. If there is a reliable link be-
tween the needs of the user, and that anticipated by the developer, this scheme can
work well. Approaches range from systems with static functionality (that always
present the same functionality to users), to systems that have some capacity to adapt
to user needs. Thus, hard-coding doesn’t mean that the systems are not adaptable,
rather that the flexibly is constrained to pre-designed options. The defining charac-
teristic of work contained in this category is that there is no local autonomy (the
system is not able to invent its own rules but rather utilise existing rules).

Contemporary examples include task based computing systems and some forms
of context aware systems. These can adapt to the users context but are built from pre-
programmed rules, switching between a pool of options according to circumstances
or context, and thus can be regarded as belonging to this category.

In more detail, task based computing was pioneered by Wang and Garlan of
CMU [49] and Fujitsu [33]. In this users interact with networked enabled services
in terms of commanding high-level tasks (e.g. watch a movie on the largest available
display). task computing can be described as a method to enable users to discover,
combine and execute coordinated contextual actions or tasks [41]. Such tasks can
be regarded as composites of lower-level actions, for example the task “watch a
movie on the largest available display” could be decomposed into a series of smaller
steps, which would need to be combined to carry out this task. A Task Computing
interface generally presents the user with a fixed set of pre-specified tasks which,
when activated, results in the system identifying and instantiating the best match
of aggregated services to satisfy the requested task. Special tools such as the GUI
based ‘Semantic Task Execution Editor (STEER)” developed by Fujitsu have been
used by developers to pre-programme tasks. A disadvantage of pre-programming
tasks is that, to some extent, it involves developers guessing at the users needs. As
will be described in section 4.2 the Pervasive interactive Programming (PiP) tool

End-user Customisation of Intelligent Environments 375

developed by Chin provides an alternative approach allowing end-users, rather than
developers, to compose tasks.

Context-aware computing which was introduced by Schilit et al, in 1994 [44].
There are numerous definitions of what context aware systems are, many based on
the type of interactivity the system uses. Here we adopt the definition proposed
by Chen and Kotz of active and passive context-awareness [12]. Active context-
awareness describes applications that, on the basis of sensor data, change their in-
terface or content autonomously, whereas passive context-aware systems prompt the
user to make the changes. A simple illustration of active context awareness might
be a mobile phone automatically switching to silent on entering a library whereas,
if it prompted the user to switch to silent, it would be an example of passive context
awareness. Other examples of active context aware computing are Georgia Tech’s
The Aware Home[30] and Microsoft’s EasyLiving project in which systems adapt
by switching between pre-programmed routines or states [7]. In principle, it would
be possible to employ deliberative agents to learn and evolve new rules to manage
the context aware system but, currently, most systems are relatively simple and are
built using pre-specified operational rules.

3.2 Agent-programmed Rules

This group describes systems where the rules for coordination are formed from the
use of intelligent agents, artificial intelligence or machine learning mechanisms. In
general these are pre-emptive decision making systems that utlise models derived
from monitoring past behaviour to predict the users next action. A distinguishing
aspect of work in this group is that the agents are self-governing, by which we mean
they learn new rules based on past behaviour. The performance of these systems is
dependent upon there being a good match between past actions and future wants
and needs.

The general focus of research in this area is to create agents that can model and
predict a person’s behaviour, with less attention being paid to how the agents are
interconnected or grouped into functional sets. Noteable test-beds and concepts for
of such system have been built, such as the MavHome [16], Neural Home [39], Hive
[38] and the iSpace (described later in this chapter).

The issue of how to aggregate services or devices, in the form of agents, remains
a particularly difficult problem and a number of approaches have been proposed to
solve this. One approach concerns the semantic web [4, 34] in which devices and
their services are tagged with attributes and semantic descriptions that allow simi-
larity searches and service aggregation to be accomplished. Another project, ANS
[36], takes the form of smart middleware which uses the OWL ontology to find ap-
propriate devices in addition to facilitating an adaptive agent-like capability which
can learn the user’s preferences. This ability is also used to make decisions on de-
vice replacement. This use of OWL is somewhat similar to Chin’s dComp work,
described later in this paper, The multi-agent community is also deeply emerged in

376 Jeannette Chin, Victor Callaghan and Graham Clarke

the control of smart environments [17] including intelligently modelling and man-
aging associations [36, 21]. This work utilises task-specific predefined policies to
enable the agents to associate with relevant devices in their search space provid-
ing some adaptation capability to deal with devices joining or leaving the network,
and people’s mobility. The networking community are also undertaking research
to endow network components with a degree of autonomy, generally aimed at im-
proving throughput and reliability [2, 21]. Most of these systems rely on semantic
descriptions in some form. A notable exception is the work of Duman [22] who has
developed a function/semantic-free exploration algorithm based on fuzzy logic to
discover and model the most relevant associations between devices and services op-
erating in digital home. Finally, there are a number of wider issues that are involved
in the successful deployment of autonomous agent based systems. For example all
automatically constructed systems of coordinating distributed agents are vulnerable
to cyclic instabilities [50]. In addition, the risk to personal privacy due to continual
monitoring is also an issue for some people [10]. Collectively, all the above issues
form a fertile and challenging research ground for researchers.

3.3 User-programmed Rules

This group describes systems where the rules of coordination are formed via ex-
plicit guidance from the end-user. This approaches bypasses the manufacturer or
professional developer by allowing the end user to create the system functionality
directly. This methodology is commonly referred to as end-user programming and
is characterized by the use of techniques that allow non-technical people to create
programs [19].

Examples of end-user programming approaches include Humble [27], which
uses a jigsaw, metaphor, enabling users to snap together puzzle-like graphical pro-
gramming representations as a way of building applications. The HYP system [5]
facilitates users to create applications for context-aware homes using a mobile phone
based graphical interface. Media Cubes [26] provides a tangible interface for pro-
gramming an environment in which each face of a cube represents a programming
operation. Programming is achieved by turning the appropriate face of the cube to-
wards the target device. Truong’s CAMP project [47] uses a fridge magnet metaphor
together with a pseudo-natural language interface to enable non-technical people to
realize context-aware ubiquitous applications in their homes.

Programming-by-example (PBE) aims to simplify the process of programming
by replacing the use of programming abstractions by the use of examples that are
conveyed by the user demonstrating the actions required to the system [45]. Later
Henry Lieberman described PBE as “a software agent that records the interactions
between the user and a conventional direct-manipulation interface and writes a pro-
gram that corresponds to the user’s actions”, where “the agent can then generalise
the program so that it can work in other simulations similar to, but not necessar-
ily exactly the same as, the example on which it is taught” [32]. Hence, PBE can

End-user Customisation of Intelligent Environments 377

be viewed as an approach that reduces the gap between the user requirements and
the delivered program functionality by merging the two tasks. To date, the main
area of PBE work has focused on graphical user interfaces running on single PCs.
For instance PBE has been applied to computer application development [40], [24];
Computer-Aided Design (CAD) system [55]; children’s programs [57], [52] [58]
and World Wide Web related technologies [46], [3], [37], [31], [6].

The MIT Alfred project and the Essex University Pervasive interactive Program-
ming (PiP) project have extended the principles of PBE into the area of pervasive
computing and Digital Homes. The Alfred project, developed by MIT in 2002, em-
ployed the concepts of ‘goals’, and ‘plans’ to allow users to compose a program via
teaching-by-example. The system was intended to utilise a macro programming ap-
proach that could be created by the user via verbal or physical interaction. However,
according to the developer of the system, Gajos, no formal studies were completed
and the work appears to have been cut short when he moved from MIT to the Uni-
versity of Washington [23]. Whilst macros are widely used, their dependence on
strict order can make them fragile and susceptible to failure, especially in appli-
cations where order of events is irregular or unpredictable. PiP, described later in
this chapter, avoided this problem by using sequence-independent behaviour de-
scriptions known as Meta-Appliances (MAps), which are akin to non-terminating
processes. PiP utilises an event-based architecture and functions by mimicking ex-
amples of the required behaviour.

3.4 Supporting Studies

Some insight into users wishes has been provided by a number of significant studies
into digital home requirements. In one study the Samsung Corporation, in coopera-
tion with the American Institutes for Research, conducted a study aimed at identify-
ing smart home requirements by interviewing and monitoring people in South Korea
and the USA [15]. Their findings included the need for harmonious cooperation be-
tween appliances and ease of use. However, more importantly for the work being
reported in this chapter, a particularly important requirement that they discovered
was the need for people to be able to customize the functionality of smart-homes.
The same need was reported in a 3-year study on Finnish people undertaken by
Tampere University Hypermedia laboratory [35].

3.5 Discussion

Rules underpin the operation numerous smart homes and intelligent environments.
As such, rule formation provides a useful taxonomy for describing the differing ap-
proaches to programming the coordination behaviour of services available in digital
homes. We have argued that pre-programmed approaches can perform well, where

378 Jeannette Chin, Victor Callaghan and Graham Clarke

the user’s needs and the system components can be anticipated correctly, and remain
relatively static. However, in more dynamic environments, where system compo-
nents and people’s needs can change quickly, they are less suitable and adaptable
agent based programming approaches become attractive. In these approaches, the
use of automated rule generation offers the advantage of reducing the cognitive load
on people by undertaking all the configuration and programming on behalf of the
user. However these approaches have some drawbacks as some researchers contend
that there can never be a perfect match between past actions and future needs, as
users will never behave in exactly the same way from day to day, month to month
and year to year. Because of this it is argued that the gap between user expectations
and agent actions will remain a source of frustration, requiring agent based pro-
gramming systems to be overridden by users frequently and thus annoying them.
In addition, the continual monitoring of people in their homes, that agent program-
ming approaches employ to maintain effective predictive behaviour models, is a
cause of concern to anyone who worries about privacy. Finally, two significant stud-
ies have discovered there is a need for people to be able to customize their smart
home functionality; an important finding that motivates further the work described
in this chapter.

4 Pervasive interactive Programming (PiP) – An Example of
End-User Programming

The users of an appliance, or the occupants of an environment, usually know the
behaviour they would like from a system but do not always have the means to com-
municate their wishes to the system. End-user programming approaches have the
advantage of not requiring the system to guess a person’s wishes as people are able
to explicitly describe their needs, although this is achieved at the cost of increased
effort on the part of the user. In addition end-user programming goes some way
to countering the fears that some people have about privacy and trust by providing
more transparent operation and more user control [10]. Thus the aim of the work de-
scribed in this chapter is to develop systems that maximise user’s control and oper-
ational transparency, engendering a sense of trust, and enabling people to customise
the functionality of their virtual appliances and digital-homes, without requiring any
detailed technical knowledge, thereby empowering user creativity. In the following
sections we will explain how we have achieved this by describing how an end-user
programming paradigm, programming-by-example, originally developed for “desk-
top computer environment”, was applied to the distributed computing systems that
underpin intelligent environments. We call this approach Pervasive interactive Pro-
gramming (PiP).

Pervasive interactive Programming (PiP), is an end-user programming paradigm
proposed and developed by Chin in 2003 as a means of addressing the issues of pri-
vacy and creativity in Digital Homes. PiP can be viewed as a methodology for en-
abling non-technical people to compose and orchestrate the behaviour of collections

End-user Customisation of Intelligent Environments 379

of network services, or devices, so as to produce the desired collective functional-
ity that characterises the smart home or a virtual appliance. It provides a platform
that utilises the physical user environment, with appropriate GUI support, to create
a novel programming environment which enables people to customise the function-
ality of their virtual appliances or digital homes to suit their individual needs. Thus,
a resident of a digital home, who has no technical expertise, is able to customise the
functionality of coordinating network devices using natural physical interaction to
demonstrate the required functionality, a task that could previously only be achieved
by conventional computer programming.

4.1 PiP Terminology

A fundamental concept underpinning PiP is the notion of deconstruction and recon-
struction of appliances and applications. This gives rise to the following terms:

• Virtual Appliances – Typical home appliances are made up from numerous
services e.g. a TV is composed of a video display, audio transducer, media gate-
way, control interface etc. Thus, when appliances are connected to a network it
might become possible to access these sub-functions, effectively deconstruct-
ing the appliance by making these basic services available to other network
users. These users may in turn combine them with sub-functions from other
networked appliances to form novel composite services or, as we chose to de-
scribe them virtual appliances. This model changes the understanding of what
an appliance is, bringing with it the potential to disrupt the current appliance
market by creating new types of producers and consumers. This concept is not
limited to physical appliances but can, potentially, include any network service.
Thus, we refer to such communities or virtual appliances by the more generic
name of Meta Appliances/Applications(MAps) and the conceptual approach as
the deconstructed appliance model.

• Atomic & Nuclear Functions – The virtual appliance principle depends crit-
ically on the ability to deconstruct monolithic appliance functionality, referred
to as nuclear functions, into sub-functions which are offered to the network,
referred to as atomic functions.

• Meta-Appliances/Applications (MAps) – A MAp is a description of a virtual
appliance or application. MAps can be viewed as soft-objects that define the
membership and behaviour of a collection of services that constitute a MAp
(or virtual appliance). MAps can be designed, owned, copied, carried or traded.
From a logical perspective, a MAp contains some basic properties and a collec-
tion of rules that determine the behaviour of a community of coordinating ser-
vices, Rules are essentially a marriage of two different types of actions, namely
antecedent (condition) and consequent (action). The antecedent of a rule can be
described as “if” while the consequent of a rule can be described as “then”. A
rule can contain 0-n antecedents and 1-n consequents, and a MAp legally can

380 Jeannette Chin, Victor Callaghan and Graham Clarke

contain 0-n rules, as rules can be added later by the end user. A UML represen-
tation of MAp relationships with rules is shown in Figure 2. From the end-users’
viewpoint a MAp is just a behaviour description that would create the sort of
virtual appliance or environmental functionality they want. As individual end
users, owners of virtual appliances or applications, have their unique prefer-
ences and their particular needs, it makes sense to let the users define theirs
own MAp i.e. their own virtual appliance behaviour. MAps are created under
the directions of end users to provide the functionalities they desire. MAps are
akin to non-terminating processes and require no specific user expertise for their
formation. They can be created, stored, retrieved, shared, executed, or removed
on demand. Until a MAp is terminated, it will retain the behaviour that the user
originally created i.e. it is a continually running process.

Fig. 2 The UML representation of the MAp object structure and its Rules

The following simple scenario is offered to illustrate the operation of MAps:

Janet is watching the news on broadcast TV in the lounge when an interesting news item
starts. She calls up to John to tune in. John is currently in the office upstairs working on
a document and listening to a podcast. He starts up the TV application, which uses the
same audio channel as his podcast, for output and tunes in to the news item. Once the news

End-user Customisation of Intelligent Environments 381

item has finished John closes the TV application and continues with his work. The podcast
resumes (from the point it was interrupted) .

In the above scenario Johns’s MAp consists of three generic virtual devices, they
are: a TV device, a radio device and a podcast device, along with three virtual ser-
vices: TV-control-service, radio-control-service, and podcast-Control-service. The
event: “when John’s TV application is on” is the conditionof a given set ofactions in
MAps. The sequences: “his podcast system halts its current operation and switches
to play the TV audio channel” are the actions that need to be performed if the condi-
tions are met; in this case there is only one condition. A partial definition for John’s
MAp is shown in Figure 11 (in the dComp ontology section).

Having described the nature of a MAp, it may be useful to understand the differ-
ences between a task and a MAp. A task refers to a set of functions (actions) that are
required to be performed via a specific command (normally a one-shot sequence)
and requires expertise for its definitions whereas a MAp, although it may provide
the same functionalities that a task provides, it is an on-going (non-terminating) pro-
cess that requires no specific expertise for its formation. Until a MAp is terminated,
it will always provide the same functionalities that the user originally created i.e. it
is a continually running process. Thus MAps are designed by users to create virtual
entities that, for example, provide functionalities to customise a digital home.

4.2 PiP System Architecture

PiP was designed to work in real time within a digital home environment. It uses an
event-based architecture, currently based around UPnP, to facilitate communication
between components. It is based on a modular framework comprising the following
six core components (see Figure 3):

1. Interaction Execution Engine (IEE) – this module manages communication
between PiP components. It is responsible for device discovery, service events
subscription, and performing network actions requests. It is built around a UPnP
control point and interfaces to the low-level network layer via UPnP proto-
cols. It features a 2-way function that, for in-bound functions, passes networked
events to the Knowledge Engine and, for the out-bound functions, passes net-
work actions, together with requests, to the network. This module also main-
tains and manages an event-subscription list, which it uses to store details of
the devices and services that are utilised in MAps. The information required for
the event-subscription list is provided by the Event Handler, which, in turn, is
driven by requests from the MAp Associator component, triggered by the user’s
interactions (eg from “PiPView” or networked devices).

2. Event Handler (EH) – this module manages the passing of events between in-
terested parties. Such parties need to register with the Event Handler in order to
receive appropriate events and their data. Examples of events include low-level
network events (e.g. device discovery), device service events (e.g. service state

382 Jeannette Chin, Victor Callaghan and Graham Clarke

Fig. 3 PiP Architecture

changes) and high-level events caused by user interaction. Table 1 illustrates the
types of events and the data handled by the EH.

3. Knowledge Engine (KE) – this module manages, assembles and instantiates a
MAp. It also updates the record of device status as well maintaining the content
of the knowledge bank and keeping it up-to-date. It notifies the Event handler
when it should send a “DataModel Event” (see Table 1) to interested parties as
a result of changes to the Knowledge Bank.

End-user Customisation of Intelligent Environments 383

4. Real-time MAp Maintenance Engine (RTMM) — this module maintains
records of all MAps. The MAp Associator registers with the Event Handler
in order to receive GUI sourced user interaction action events. For example,
when the user “drags & drops” devices into a “programming formation palette”,
the GUI component notifies the Event Handler which, in turn, generates a re-
lated event that is passed to the MAp component. Likewise, the MAp Associator
Component notifies the Event Handler of any changes in the user’s MAp, which,
in turn, generates a MAp Event which is propagated to interested parties.

5. Real-Time Rule Formation Engine (RTRF) – this module assembles rules
formed by monitoring user interactions during the “demonstration” mode (started
and stopped by the user clicking the “ShowMe” and “Done!” button, respec-
tively, on the PiP editor). It registers with the Event Handler to get events from
the Knowledge Engine, MAp, GUI and user’s activities. This module also as-
sembles rule fragments based on user actions. At the end of a ‘demonstration
mode” the aggregation of rule fragments become a MAp.

6. GUI (PiPView) – This module provides a means for the user to interact with
the system; It enables the PiP user to inspect the network environment, view
online devices and services, control the physical devices and compose/delete
Maps/Rules (an alternative to the use of physical devices for programming), To
enhance the intuitive nature of PiP, the editor was designed to convey the fa-
miliar “look and feel“ of current ‘Windows’ applications. Thus the GUI utilises
“drag, drop & clicking” for interaction. The software is built around a multi-
threaded scheme with the ‘editor class’ being the main class and the user’s en-
try point to the system. Other classes include ‘pop-up dialogs’, ‘device control
panel’ and ‘help’. PiPview differs to other modules in that it is not contained
in every instance of PiP, rather only in the editor device (a tablet, in the current
implementation).

4.3 How the System Works

A PiP user can configure and program the functionality of a MAp using either graph-
ical or direct physical interaction with the appliances. In PiP all networked items
that exist in the ubiquitous environment can be regarded as user interfaces, as users
can chose to interact with them as an alternative a GUI during the demonstration
process. The network appliances used in our evaluation are shown in Figure 4. The
benefit of interacting with real appliances, rather than a GUI, is that it is more nat-
ural and intuitive Thus the PiP metaphor for configuring digital home functionality
is very simple.

In more detail, to create a MAp, a person needs to log into the system through
PiPView. An instance of the Interaction Execution Engine (IEE) module then com-
pletes a network discovery cycle and reports available devices to the Knowledge
Engine (KE) which, via the EventHandler (EH), informs all registered devices (reg-
istered at start-up time). For example, PiPView receives a notification and then an

384 Jeannette Chin, Victor Callaghan and Graham Clarke

Fig. 4 The PiP Evaluation Environment

Fig. 5 PiP View – user’s MAp Fig. 6 PiP View – Rules

instance of the interpreter transforms and renders descriptions of the devices on the
GUI, allowing the user to decide which devices to use for creating or modifying a
MAp.

MAps are created by the user, who first assembles a community by dragging and
dropping service and device representations into a formation palette. This defines
the set of devices that, via the Event Handler and the Interaction Execution Engine,
share events and become a virtual appliance or MAp. When devices are formed
into assemblies the user is free to save or remove the MAp at any time during the
demonstration cycle.

Using PiPview the user informs PiP when to the process of demonstrating the
MAp or virtual appliance behaviour will begin which, in turn, activates the Real
Time Rule Formation (RTRF) Engine. Next the user demonstrates actions as to how
the MAp should behave by providing examples using any one of three methods:

End-user Customisation of Intelligent Environments 385

Fig. 7 PiP on tablet Fig. 8 End-user programming via physical in-
teraction

1. Physically interacting with the devices themselves;
2. Using the GUI;
3. A combination of both.

Using the users preferred interaction method, the user demonstrates the desired
behaviour which results in the generation of related events on the network. In the
background the Real-Time Rule Formation Engine “listens” for user’s activities,
which are communicated to it via the Event Handler that in turn, is informed by the
Knowledge Engine when it receives a notification that the status of a remote device
has changed. This behaviour is then encoded as a set of rules as described earlier.

In terms of sequencing, PiP aims to give the user as much freedom as possible,
allowing antecedents and consequents to be formed in any quantity and order (i.e.
the user is not required to follow a rigid logical sequence). Thus, unlike macro lan-
guages, where the sequence of instructions or actions is important, PiP places no
significance on logical sequence. PiP employs a rule policy to maintain a MAp ex-
ecution process in which “a set of conditions is satisfied if, the conditions defined
within the context of this set, are all satisfied”. For example the rule statement: “if
the telephone is ringing and, if the audio is playing, then stop the audio and raise
the light level” will have the same logical meaning to any of the following rule
statements:

• “if the audio is playing and if the telephone is ringing then raise the light level
and stop the audio”

• “if the telephone is ringing and if the audio is playing then raise the light level
and stop the audio”

• “if the audio is playing and if the telephone is ringing then stop the audio and
raise the light level”

This is achieved by using a Rule Disassembler which separates antecedents and
consequents. The rules are then shaped by a Real-Time Ambience Relation Re-
solver, which is responsible for resolving the relationships of the information re-
ceived from the network‘s internal system and the user. To avoid rule conflicts (eg
contradictory condition-actions) a process, the Contextual Consequence-Focus Con-
flict (CCFC) Detection Mechanism, tests whether the user’s current action conflict

386 Jeannette Chin, Victor Callaghan and Graham Clarke

Event Type/Method Data
DataModel Event DEVICE_UPDATED Object

REMOVE_DEVICE Object
STATE_CHANGED Object
SERVICE_UPDATED Object

PiPUIEvent SET_CURRENT_MAp Object
MAp_DELETED Object
SET_CURRENT_RULE Object
RULE_DELETED Object

RuleModelEvent ANTECEDENT_ADDED Object
ANTECEDENT _REMOVED Object
CONSEQUENT_ADDED Object
CONSEQUENT _REMOVED Object
ANTECEDENT
_STATE_CHANGED

Object

CONSEQUENT
_STATE_CHANGED

Object

RULE_CHANGED Object
CCFC Event DUPLICATES_CONFLIC Object

CCFCACTIONS_CONFLICT Object
DUPLICATE_ CONSEQUENT Object

MAp Event MAp_REGISTERED Object
MAp_REMOVED Object
REGISTER_DEVICE Object
REMOVE_DEVICE Object
REMOVE_ALL_DEVICES Object
RULE_ADDED Object
RULE_REMOVED Object

PiPUPUPnPService
Event

stateChanged(StateVariable
variable)

StateVariable

Table 1 PiP Event attributes table

with other MAps rules which may result in unwanted system behaviours. If the
CCFC detects no conflicts then the Rule Assembler constructs the rule. If there are
conflicts, the CCFC Entanglement Handler will deal with this situation by perform-
ing the following operations (1) gathering the conflict information (2) isolating the
conflict actions from those in the current MAp and (3) presenting conflicts to the
user so he may alter his action to avoid the conflict. Having created a MAP, to ac-
tivate it, the user simply needs to drag the MAp’s graphical representation from the
user’s home program area (represented in a sub-view), dropping it on the “play”
button located at the top of the PiPView. To terminate a MAp, the user simply clicks
the “stop” button.

End-user Customisation of Intelligent Environments 387

5 The dComp Ontology

To maximise the usability of the system, data needs to be formed in a suitably se-
mantic and standardised manner so that it can be understood and reasoned on by all
parties in the network. To support this we have devised an ontology for PiP called
dComp, that supports information interoperability between applications and provide
a common knowledge framework.

PiP leverages the dComp ontology semantics as a core vocabulary for its infor-
mation space. dComp allows information to be conceptually specified in an explicit
way by providing definitions associated with names of entities in a universe of dis-
course e.g. classes, relations, functions, or other objects, that are both in a machine
and human useable format. In more practical terms, the dComp ontology describes,
for instance, what a device names mean, and provides formal axioms that constrain
the form and interpretation of terms.

Table 2 dComp ontology

5.1 dComp Rationale

The dComp ontology was built on the OWL language, as it is more expressive than
RDF or RDF-S that is it provides additional formal semantic vocabularies allow-
ing PiP to embed more information into the ontology. In addition OWL is widely
used, especially for the semantic Web, with numerous supporting tools such as Jena
[53] and inference engines such as RACER [25], F-OWL [51], and Construct [54].
In order to realise our vision, a set of explicitly well-defined vocabularies (i.e. an
ontology) was needed to model, not just the basic concept of decomposed devices

388 Jeannette Chin, Victor Callaghan and Graham Clarke

but also, the communities they form, the services they provide, the rules and poli-
cies they follow, the resultant actions that they take, and of course the people who
inhabit the environment along with their individual preferences; dComp provides
these properties. In creating dComp we have sought, wherever possible, to build on
existing work. One such notable ontology is SOUPA [56] from Ubicomp which,
while aimed at pervasive computing, lacks support for key PiP mechanisms such
as community, decomposed functions and coordinating actions needed to produce
higher level meta functionality [11]. In addition, at the time dComp was developed
the SOUPA standard had only limited support for the concept of UPnP-based de-
vices which PiP depends upon. However, SOUPA has a well-defined method of sup-
porting notions of Action, Person, Policy and Time which dComp adopted. Thus,
most of the innovation in dComp relates to the ontology of decomposition and com-
munity leading to the name “Decomposed Community Programming” (dComp).

5.2 The dComp Ontology – An Overview

The following description takes the form of a summarised walk-through dComp;
the full specification is available online[59].

5.2.1 The Device Class

The main class is called “DCOMPDevice” and provides a generic description of all
PiP devices. Currently DCOMPDevice has 10 sub-classes (see table 2) including
both nuclear (traditional appliances) and atomic (decomposed) devices and remains
the subject of ongoing development. The roles of most sub-classes are obvious from
their names. Those which might not be obvious include “DeviceInfo” which is for
individuals that share some UPnP descriptions, “DeviceInfo” is used for devices
sharing some UPnP descriptions, “Characteristic” for different mobility character-
istics, Relationships are defined by using the OWL object property and are: (1) has-
DeviceInfo (2) hasHardwareProperty (3) hasDCOMPService (4) hasCharacteristic.
The main elements of a typical DCOMPDevice expression is shown in figure 9.

5.2.2 Hardware Class

An abstract class, DCOMPHardware, generalises all PiP hardware that exists in a
DCOMPDevice and, in the current version, has 8 sub-classes along with associated
properties: CPU, Memory, DisplayOutput, DisplayInput, AudioOutput, AudioInput,
Amplifier and Tuner. In order for the PiP DCOMPDevices to work together, every
DCOMPDevice on the dComp network, offers services. These services are mod-
elled by a class called “DCOMPService” which currently contains three sub-classes,
namely PiPService, LightsAndFittingsService and EntertainmentService. Each con-

End-user Customisation of Intelligent Environments 389

tains sub-services, for example, the EntertainmentService class includes AudioSer-
vice, VideoService, FileRepositoryService, SetTopBoxService and FollowMeSer-
vice. The LightsAndFittingsService and EntertainmentService are mutually distinct
(ie in mathematical terms, they do not belong to a same set). These characteris-
tics are modelled by declaring the classes to be disjointWith each other. Every ser-
vice in the dComp environment is identified by a property called “serviceID” and a
class called “StateVariable” (to represent UPnP values). The StateVariable class has
three properties, namely: “name”, “value” and “evented”. The relationship between
a DCOMPService and the StateVariable is linked by an object property called “has-
StateVariable”. The relationship between a DCOMPDevice and DCOMPService is
coupled by an object property called: hasDCOMPService.

<device:AudioDevice rdf:ID="TestDevice12">
<device:hasDeviceInfo>

<device:DeviceInfo>
< device:friendlyName>TestDevice12</device:friendlyName>
<device:DeviceUUID>0</device:DeviceUUID>
<device:DeviceType>urn:schemas-upnp-org:TestDevice12:1

</device:DeviceType>
<device:DeviceModelURL>http://TestDevice12URL/

</device:DeviceModelURL>
<device:DeviceModelNumber rdf:datatype="&xsd;double">0.0

</device:DeviceModelNumber>
</device:DeviceInfo>

</device:hasDeviceInfo>
<hw:componentOf>

<hw:RAM rdf:about="#JCTestMemory2"/>
</hw:componentOf>

<serv:hasDCOMPService>
<!– can have more than 1 service –>

<serv:AudioService rdf:about="#JCAudioService01"/>
</serv:hasDCOMPService>

<!– 2nd service –>
<serv:hasDCOMPService>

<serv:AudioService rdf:about="#JCAudioService02"/>
</serv:hasDCOMPService>

<!– 3rd service –>
<serv:hasDCOMPService>

<serv:AudioService rdf:about="#JCAudioService03"/>
</serv:hasDCOMPService>

</device:AudioDevice>

Fig. 9 Typical Display Device Expression

390 Jeannette Chin, Victor Callaghan and Graham Clarke

<com:TransitoryCommunity rdf:ID="JCTV">
<com:communityID>Tran-JCTV</com:communityID>
<com:communityName>JC TV</com:communityName>
<com:communityDescription>The first JC testing TV

</com:communityDescription>
<com:timeStamp rdf:datatype="&xsd;dateTime">

2004-09-06T19:43:08+01:00</com:timeStamp>
<com:hasOwner>

<person:Person rdf:about="#JC"/>
</com:hasOwner>

<com:hasCommunityDevice>
<com:CommunityDevice rdf:about="#JCMonitor CRT17"/>
</com:hasCommunityDevice>

<com:hasCommunityDevice>
<com:CommunityDevice rdf:about="#JC AudioMMS223"/>
</com:hasCommunityDevice>

<com:hasCommunityDevice>
<com:CommunityDevice rdf:about="#JC :NetGem442"/>
</com:hasCommunityDevice>

</com:TransitoryCommunity>

Fig. 10 Typical TV community definition

5.2.3 Community Class

In order to support the notion of community (a MAp), dComp uses a class called
DCOMPCommunity. In the current implementation three types of communities
are used namely: (1) SoloCommunity (for those devices not yet part of a com-
munity) (2) PersistentCommunity (for communities with a degree of permanency)
(3) TransitoryCommunity (for communities with a short lifetime). A dComp de-
vice (DCOMPDevice) can join one or more communities (a community must have
at least one device). Relationship between a dComp device (DCOMPDevice) and
a dComp community (DCOMPCommunity), is described using an object Transi-
tiveProperty called “inTheCommunityOf”. A class called “CommunityDevice” is
introduced to represent all the devices in a community. Devices are identified by an
object, deviceUUID.. The relationship between a Community and a Community de-
vice (CommunityDevice) is linked by another object TransitiveProperty called “has-
CommunityDevice”. A user forms communities in dComp; thus, each community
has an owner. The properties of Communities are: community ID, communityName,
communityDescription and timestamp. The relationship between a community and
its owner is linked by an object type property, called “hasOwner”. An example of
the main elements in a dComp TV community is given in figure 10.

End-user Customisation of Intelligent Environments 391

<com:TransitoryMAp rdf:ID="JohnMAp">
<com:communityID>Tran-JohnMAp</com:communityID>
<com:communityName>JohnMAp</com:communityName>
<com:communityDescription>John testing virtual MAp

</com:communityDescription>
<com:timeStamp rdf:datatype="&xsd;dateTime">

2004-09-06T19:43:08+01:00</com:timeStamp>
<com:hasOwner>

<person:Person>
<person:firstName rdf:datatype="&xsd;String">John</person:firstName>
<person:nickname rdf:datatype="&xsd;String">Johnny</person:nickname>
<person:gender rdf:resource="#Male"/></person:Person>
</com:hasOwner>

<com:hasCommunityDevice>
<com:CommunityDevice>

<device:deviceUUID>UUID:iPHLDigitalTV17</device:deviceUUID>
</com:CommunityDevice>

<com:CommunityDevice>
<device:deviceUUID>UUID:PHLhifiMMS223</device:deviceUUID>
</com:CommunityDevice>

<com:CommunityDevice>
<device:deviceUUID>UUID:WonderInternetRadio42

</device:deviceUUID>
</com:CommunityDevice>

</com:hasCommunityDevice>
<rule:hasRuleSet>

<rule:RuleSet>
<ruleSetIDrdf:datatype="&xsd;String">

3e4edfa8-055e-4ef0-8581-70156c156288</ruleSetID >
</rule:hasRule>

<rule:NonPersistentRule>
<ruleID rdf:datatype="&xsd;String">

ce4edfa8-c55c-4ef9-8581-40156c156258</ruleID>
</rule:NonPersistentRule>

</rule:hasRule>
</rule:RuleSet>

</rule:hasRuleSet>
</com:TransitoryMAp>

Fig. 11 John’s Meta-TV Applicance

392 Jeannette Chin, Victor Callaghan and Graham Clarke

5.2.4 Rules Class

PiP uses rules for coordinating community actions. These are supported by a class
called “Rules” which models three types of rules: (1) UnchangeableRules (rules
that can not be changed), (2) PersistentRules (rules that infrequently change) and
(3) NonPersistentRules (rules that frequently change). These rules are mutually dis-
tinct and are declared to be complementOf each other. Rules have properties: ruleID
and ruleDescription and an object property called “hasRuleOwner” to link to the
owner (the rule and community owners may be different people). A class called
“Preceding” is used to represent a set of triggers that cause the coordinating actions
to be executed. The devices in the Preceding class are identified by their deviceU-
UID, and the service they offer. Lastly an object property called “hasAction” binds
the relationship between Rules and Actions. The main elements of a Rule Definition
is given in figure 12.

Fig. 12 Main elements of Rule Definition
Fig. 13 Main elements of a Situated Condition

5.2.5 Action, Person, Policy and Time Class

As mentioned earlier, wherever possible dComp builds on existing ontology work.
As SOUPA provides a suitable DCOMPperson, Policy and Time ontology these
have been adopted in dComp. The dComp Action ontology document has, to some
extent, been influenced by the SOUPA Action ontology. The class “Action” repre-
sents the set of actions defined by the rules. As with SOUPA, dComp provides two
types of actions, namely: PermittedAction and ForbiddenAction class. The Action
class in dComp is the union of these two action classes; every coordinating action
has its target devices. A class called “Recipient” models target devices, which rep-
resents a set of target devices where actions take place. The members of Recipient

End-user Customisation of Intelligent Environments 393

are identified by their deviceUUID and the serviceID. Actions for the recipient are
called “TargetAction” which has two properties namely actionName (the name of
the action) and targetValue (the value for the action to be taken). A typical statement
“when the phone rings, mute the TV” could be expressed as in figure 14.

<act:PermittedAction rdf:ID="TestAction">
<act:actionName>Test action</act:actionName>

<act:hasRecipient>
device:DeviceUUID>UUID:PHLAudioMMS223</device:DeviceUUID>

<serv:serviceID>AudioMMS223</serv:serviceID>
</act:hasRecipient>

<act:hasTargetAction>
<act:actionName>Mute</act:actionName>

<act:targetValue>Mute</act:targetValue>
</act:hasTargetAction>

</act:PermittedAction>

Fig. 14 Main elements of an Action (muting the TV)

5.2.6 Preference Class

A person’s preferences are described in dComp by DCOMPPreference. In dComp,
preferences are referred as “situated preferences”, which is similar to Vastenburg’s
“situated profile” concept where he uses situation as a framework for user profile so
that the values of the profile are relative to situations [48]. The “Preference” class
represents a set of situated preferences of a person for his community. This Prefer-
ence class has a subclass called “CommunityPreference” and an associated property
called “communityID”. To model “person A prefers X, depending on the situation
conditions of Y”, another class called “SituatedConditions” is defined which rep-
resents the set of situated conditions that the person’s preferences depended on.
Although users are allowed to define their own “SituatedConditions”, dComp ex-
plicitly defines a list of pre-set situated conditions so that it forms a default template
that a person can use. The Preference class has a close relationship to the Person
class. To bind this relationship, an object property called “hasPreference” is used,
which links the domain of Person to the range of Preference. The relationship be-
tween the Preference class and SituationConditions class is linked by another object
property called: “hasCondition”. The main elements of a Situated Condition are
given in figure 13.

394 Jeannette Chin, Victor Callaghan and Graham Clarke

6 Evaluation

PiP was designed to be used by people and thus, to evaluate it we devised a small
“proof of concept” trial involving real users who were asked to compose bespoke
MAps within an experimental digital home, the iSpace. The primary purpose of
the evaluation was to determine if users were able use PiP in a creative manner
to construct MAps of their own design and to gain an insight into the participants
post-trial views of PiP’s usability. In addition we tested the performance of dComp,
as ontology can be computationally demanding. We summarise this work in the
following sections.

6.1 PiP Testbed

Fig. 15 The Essex iSpace

PiP was evaluated in Essex the iSpace, a test-bed called which takes the form of
a two bed roomed domestic apartment, see Figure 15. The iSpace was built from the
ground-up to support digital home research and has many special structural features
such as cavity walls/ceilings containing power & network outlets together with pro-
vision for internal wall based sensors and processors etc. In addition the iSpace has
been populated with in excess of a quarter of a millions pounds worth of networked
equipment varying from appliance, sensors, actuators through to special purpose
equipment to support user trials. There are numerous networks in place ranging
from wired , power-line, wireless, broadband to high-bandwidth multi-mode fibre
connections to the outside world. The network and middleware infrastructure is il-
lustrated in figure 16. All the basic services are electrically controlled wherever
possible (eg heating, water, doors, telephones, MP3 players, lights, etc).

6.2 dComp Performance Evaluation

Ontology brings many benefits to PiP, such as the ability to employ reasoning about
service selection and aggregation but its downside is that it can be computation-

End-user Customisation of Intelligent Environments 395

Fig. 16 The iSpace Network Structure

ally demanding. In our case there was concern that one of the special features of
PiP, the MAps based decomposed descriptions, might not perform well in large do-
mains because of increased link following. To evaluate the performance of dComp
we compared two sets of device descriptions; the first description was structured
in typical xml-based “all-in-one” format, while the second was decomposed into
smaller segments (i.e. broken up into hardware and service information), each seg-
ment being “linked” back to the device. Both descriptions were written in OWL. For
each set, we used 2 different quantities of devices in the test (3 and 32). A common
query with five conditions was used for the test, with each test being run fifty times.
The test was conducted on a WindowsXP, 2.08 GHz, 512 RAM machine. Four sets
of tests were completed: (1) 3 device descriptions in “all-in-one” format (2) 3 de-
vice descriptions in “decomposed” format (3) 32 device descriptions in “all-in-one”
format and (4) 32 device descriptions in “decomposed” format.

Fig. 17 A typical dComp performance test

396 Jeannette Chin, Victor Callaghan and Graham Clarke

A representative example of our tests is shown in figure 17. As can be seen we
found that the decomposed device description out-performed the compact devices
description for smaller domains with fewer devices. On average, queries took half
the time that “all-in-one” format descriptions took. Although we had been concerned
that decomposed descriptions might not fare as well for larger domains we found
that this was not the case, as the system performed as well as the “all-in-one” de-
scriptions, whilst offering the advantages of decomposition described earlier. This
we attribute to additional link-processing being counterbalanced by the processing
benefits of smaller, better focused descriptions. For larger domains we found that
the performance of decomposed versus the compact descriptions remained roughly
the same.

6.3 The PiP Evaluation

To assess the participants’ subjective views on the usability of PiP, an evaluation
methodology was developed with the assistance a socio-technical research unit,
Chimera, based at the BT Research Labs in Suffolk, England [20]. The evaluation
comprised both observations and a questionnaire measuring attitudes over six us-
ability dimensions shown in Table 3 (a higher rating score on the dimensions shows
greater usability). The questionnaire was developed to assess the participants’ sub-
jective judgments about the usability of PiP. It consisted of a set of seventeen state-
ments, measuring attitudes over the following six usability dimensions: the overall
concept, user controls, cognitive load, information retrieval/visualisation, affective
experience and future potential. The questionnaire was based on a five-point Likert
scale with responses from “Strong Agree” through to “Strongly Disagree”. The di-
mensions each consisted of a series of statements (from 2 to 4) with each statement
offering a range of ratings (from 1 to 5). A higher rating score on the dimensions
contributes towards the greater usability of PIP. In the research community there is
some discussion as to how to best construct this type of test with, for example, some
researchers worrying that there is no metric, interval measure or that the data would
be best treated as ordinal [18]. However, there is a widely accepted consensus that
the Likert scale can use with interval procedures, provided the scale item has at least
5 and preferable 7 categories [42]. Thus, as we are using 6 categories, the question-
naire rating data was treated as interval data in this study. The questionnaire was
piloted on 3 users and the feedback used to refine the procedures and questionnaire
for the main trial. In terms of the structure of the trials, our strategy was to set-up
as open an arrangement as possible, with minimal constraints being placed time,
methods, and tasks so that we could get a better idea of how participants would like
to use the system, and how the system coped with different users.

End-user Customisation of Intelligent Environments 397

Fig. 18 Participant’s Computing Experience Fig. 19 Participant’s Programming Experience

6.3.1 Participants

The PiP evaluation comprised eighteen participants drawn from a diverse set of
backgrounds (e.g. housewives, students, secretaries, teachers etc), see figure 20. The
gender mix was 10 females and 8 males with ages ranging from 22 to 65. The partic-
ipants also formed a multicultural group including Asians, Europeans, Americans,
Latin-Americans and Australians. All trial participants had some minimal comput-
ing experience (i.e. they knew how to use a mouse and keyboard) see Figure 18. 60%
of the participants had no programming experience whilst 20% of them had a very
good knowledge of programming, see Figure 19. For the PiP evaluation sessions,
participants were given five sets of devices drawn from a set of lights, a telephone,
smart sofa and an MP3 player and asked to create a collective behaviour of their
own design. In addition PiPview (the Pip GUI) was set-up to run on a winXP tablet
PC (HP) that connected to the iSpace network via a Linksys 802.11g WIFI access
point. As will be explain in greater detail below, the evaluation was preceded by a
20-minute training session to show the participants how to use the PiP technology.
With only 5 devices, the possibilities for the users to create interesting designs were
a little limited. However, despite that limitation, the users created a number of inter-
esting virtual appliances such as, for example, Telight (telephone linked to lighting),
LightSof (reading lights linked to sitting on the sofa) and Telight3 (lights and MP3
player responding to the telephone).

6.3.2 Procedures

The University enforces stringent ethical regulations pertaining to research involv-
ing people and animals. Thus, prior to the evaluation, a consent form was prepared
and completed by all participants before commencing their sessions to ensure that
the participants were fully aware of the type of data that would be collected during
the session and its use after the session was completed.

398 Jeannette Chin, Victor Callaghan and Graham Clarke

Each PiP evaluation participant was given a 20-minutes training session to famil-
iarise them with PiP. This training session included: a briefing on the PiP concept, a
walk through using the PiP UI, a quick demo on how to compose a MAp followed
by an introduction to the trial environment. The task for the trials was deliberately
open and participant were use PiP to customise the functionality of the 5 devices
they were given in any way they wanted; thus the participants were free to create
one or more MAps of their own design. After creating MAps participants were en-
couraged to switch between the MAps they had created.

Fig. 20 Trial Participants

No time limit was set for the participants to customise the space. Assistance was
provided where needed. Following completion of the evaluations, a questionnaire
was administrated to measure the participants’ subjective judgements of PiP. Par-
ticipants rated a total of seventeen statements covering six dimensions mentioned
above. To support the evaluation a “user-action” module was created and installed
in PiP to collect system data. A digital video recorder was used to record partici-
pants’ interactions and verbal comments. Data was analysed using SPSS.

6.4 Results

6.4.1 Performance

An analysis of the evaluation data showed that, in general, all the dimensions rated
well (scoring above 4) indicating the users were generally well satisfied with the
system. At the outset of the work, two suppositions that we wished to confirm were
that people would enjoy the experience of using PiP to create MAps and find the
process relatively easy. Both of these suppositions were supported by the evaluation
results as, ‘enjoying the experience’ (the mean of the affective dimension) scored
4.6, the highest rating, whilst the cognitive load dimensions achieved an overall av-
erage of 4.3 indicating people found the process relatively simple. In fact, it was
found that 88.9% reported that they used the controls with ease and 83% of partici-

End-user Customisation of Intelligent Environments 399

pants were able to use the system to create their desired environments with little or
no assistance.

The evaluation showed that after only a brief training session (20-minutes), 83%
of participants were able to use PiP to customise their personal space with little or
no assistance. The time taken to accomplish these tasks varied from participant to
participants but our evaluation objectives didn’t include measuring the time taken
(although it was typically of the order 2-5 minutes, depending on the complexity of
the behaviour being designed). Concerning the two methods available for demon-
strating examples, 11% of the participants chose to customise their personal space
wholly via GUI controls while 72% of them conducted by physical interactions with
the environment while the rest used a mixture of both. Trial participants showed no
sign of distress during or after the evaluations. Although PiP is not exacting on log-
ical sequence when composing MAp, 33% of the participants expressed the view
that they found it mentally easier using a logical sequence and decided to conduct
their trials that way. The remainder of the participants (77%) focused on the task (ie
creating the behaviour of the environment rather than logical sequence). The study
also revealed that none of the participants found it difficult to understand the basic
principles of the system.

6.4.2 Questionnaire Rating

A variety of tests were completed to analyse the questionnaire ratings using the
SPSS software package. Table 2 summarises the overall rating scale for the six di-
mensions evaluated. The results revealed that “Affective Experience” dimension re-
ceived the highest rating. 148 out of the total number of 240 cases received a top
rating, which is 61.7%. The “Information Retrieval” dimension – information pre-
sentation – had the lowest recorded rating (2) whereas in all other dimensions 3
was the lowest recorded. Tests also revealed that the overall difference between the
lowest (4.1) and highest (4.6) mean ratings was not great (see Table 2). The highest
mean rating was scored by “Affective Experience” dimension suggesting partici-
pants were enjoying the experience of programming using PiP. The cognitive load
dimension had an overall average score of 4.3 indicating participants found the pro-
cess relatively simple. From individuals’ tests we observed that an overall 83.4% of
all participants found PiP intuitive to use and 94.4% of all participants stated they
felt the experience rewarding. Thus these results supported the original supposition
that people would both enjoy and find the process of using PiP easy.

In addition, we completed a cross analysis based on the participants comput-
ing and programming experience ranging from average, good to very good (Figure
19). Due to the length limit of the paper, only the results of the group with average
computing and programming experience are reported here. For this group of partic-
ipants, 4 out 199 cases evaluated had negative responses (2%). However, the overall
results showed that they rated highly for all six dimensions (Figure 21). Examples
of remarks recorded from this group include: “I just feel like right now I want to sit

400 Jeannette Chin, Victor Callaghan and Graham Clarke

N Mean Std. Deviation Std. Error 95% Confidence Interval for
Mean

Min. Max.

Lower Bound Upper Bound

Conceptual 113 4.3186 .53894 .05070 4.2181 4.4190 3.00 5.00

UserControl 191 4.1990 .59134 .04279 4.1146 4.2834 3.00 5.00

CognitiveLoad 155 4.2710 .57332 .04605 4.1800 4.3619 3.00 5.00

InformationRetrieval 112 4.4107 .54613 .05160 4.3085 4.5130 2.00 5.00

AffectiveExperience 240 4.6083 .50596 .03266 4.5440 4.6727 3.00 5.00

FutureThoughts 83 4.1687 .76221 .08366 4.0022 4.3351 3.00 5.00

Total 894 4.3602 .59489 .01990 4.3211 4.3992 2.00 5.00

Table 3 One-Way ANOVA test on dimension vs qRating

down for a lot longer and try out all sorts of MAps that I could possibly create!” and
another one : “I can really get quite keen on it”.

Fig. 21 Mean ratings for
each individual group of
participants.

In general the “Information Retrieval” dimension (how well information was
conveyed to the user) scored the least indicating this was the worst aspect of the
PiP design. Given that the interface was a rather crude prototype, not the final prod-
uct, it was not surprising to find that the interface could be improved. Other useful
findings were that, we found no significant variation across culture but found some
minor variation on cognitive loading for age groups, with younger participants find-
ing the system slightly easier to use. In terms of general observations, none of the
participants appeared to find the principles difficult to understand. By way of an
example, that was typical of many users, one participant stated “I thought the basic
principles themselves are very simple and straight forward”, “I felt I could eas-
ily grasp the basic principles”. This particular comment was from the group with

End-user Customisation of Intelligent Environments 401

no programming skills at all, a key target group for PiP. Overall 83.4% of all par-
ticipants found PiP intuitive to use and 94.4% of all participants stated they felt it
rewarding to use PiP. Thus these initial results support the original hypothesis of
the work that it is possible to produce a system that empowers non-specialists to be
able, and to enjoy, programming customised MAps.

Like all disruptive technologies, user power is significant but, ultimately, just one
of many factors in determining whether a given technology will be adopted in the
market. This evaluation stops short of understanding the issues that drive companies
into adopting particular products although, for those interested in understanding
those processes an illuminating paper has been written by a member of Intel’s User
Experience Group which takes PiP and the concept of MAps as its focus [28].

7 Concluding Discussion

In this chapter we have described a vision for customising intelligent environments
based on a form of programming-by-example. In this approach non-technical occu-
pants of intelligent environment are given end-user tools to enable them to create
their own bespoke functionalities for networked environments. In order to achieve
this vision we introduced a number of new concepts and methodologies, in particu-
lar the ‘deconstructed appliance model’, meta-appliances/applications (MAps), the
dComp ontology and Pervasive interactive Programming (PiP).

In order to situate our work we presented a ‘rule formation’ taxonomy based on
the way rules in networked devices are constructed; Pre-programmed rules – Agent-
programmed rules – User-programmed rules. The work in this chapter lies firmly
within the latter class, user-programmed rule based systems. This allowed us to
contrast our work to other significant approaches, such as autonomous self-learning
agents. The ensuing review revealed that all approaches have strengths and weak-
nesses meaning that the choice of approach depends on the specific needs of a given
applications. For instance self-programming agents do extremely well where there
is a need to reduce the cognitive load on an individual, as they can manage the whole
process without intervention from the user. However, for cases where there is a need
for the home occupant to exercise greater control, or to participate intimately in the
creative design process, then end-user programming has advantages. Of particular
relevance to this chapter is “programming-by-example”, a well established and suc-
cessful end-user programming paradigm. We described programming-by-example
from its roots in the mid-seventies when Smith introduced it through to the inspira-
tional work of Lieberman in the 90’s and to its use by Chin in pervasive computing
environments in the new millennium. Over this time, programming-by-example
has evolved from a means of programming applications on single platforms, to pro-
gramming behaviours of embedded systems in distributed computing platforms. As
part of this review we reported on a number of significant studies into smart home
requirements and reported on their finding that a particularly important requirement

402 Jeannette Chin, Victor Callaghan and Graham Clarke

they found was the need for people to be able to customize the functionality of
smart-homes. This finding underpins the motivation behind this work.

By way of an example of end-user programming we presented Chin’s work on
Pervasive interactive Programming (PiP). Chin’s work is novel in that it translated
the principles of programming-by-example from single stand-alone computing plat-
forms to distributed computing platforms. Before PiP, programming-by-example
had not been applied to programming tangible physical objects, especially dis-
tributed embedded computing nor any other aspect of pervasive computing.

PiP also introduced a number of innovative concepts such as the deconstructed
appliance model, virtual appliances and Meta-Appliances/Applications (MAps).
These concepts represent a radically new way to view the nature of home appli-
ances by breaking apart monolithic appliance functionality into their elemental or
atomic components, allowing them to be recombined by the user so as to customise
the functionality of their appliances or environment. Currently, for historical rea-
sons (ease of use, economies of production, technology limitations etc), appliances
have been largely monolithic units (e.g. televisions, telephones etc), a paradigm that
‘deconstruction’ challenges. Whilst such changes to the market with replacement
of monolithic appliances by more elemental services in the home would require a
somewhat abrupt change to markets and therefore may be unlikely a more gradual
evolution is possible by the gentle augmentation of appliances with network capabil-
ities. Thus, even if it came to be that future homes had elemental services installed as
standard for example displays, audio transducers, sensors, actuators, tuners, stream-
ers etc, much as heating and lighting services are now standard, the road to that
future is more likely to be a gradual evolution. This chapter also revealed another
important feature of MAps; they are soft-objects and portable, able to move with
people and, where possible, configure the environment to reflect a person’s prefer-
ence wherever they are. In addition, beyond the home, MAps have the potential to
alter business models as, being soft-object created by people with no technical skills,
but having value, they could be traded. The soft nature of MAp makes them ideal
for online web based trading which could be undertaken could be by individuals,
new types of business coalitions, or traditional companies.

We described our prototype ‘proof of concept’ architectural implementation of
PiP. The core principles included the use of eventing, to capture user interaction;
virtual engines, to execute user generated PiP rules and ontology, to allow better
resource sharing and allocation. We provided an overview of the dComp ontology,
which built on both Soupa and Owl principles to provide support for the PiP decon-
structed model, especially MAps. In particular dComp differs from other ontologies
by providing representations for community, decomposed functions and coordinat-
ing actions which are fundamental to the PiP model for end-user customization.

The PiP evaluation was conducted in a purpose-built intelligent environment
testbed known as the iSpace. This is a purpose built domestic apartment, which
contains numerous, networked appliances, sensors and actuators. Initial testing of
the dComp ontology showed that even the most computationally intensive queries
relating to PiP decomposition were returned in less than a second, which yielded ac-
ceptable system performance. The main evaluation concerned assessing the ease or

End-user Customisation of Intelligent Environments 403

difficulty people had in using our prototype system PiP system to programme MAps.
Whilst we were only been able to undertake a comparatively small scale evaluation
with 18 users, the initial findings were most encouraging as they showed that it was
possible to produce an end-user programming system that empowers non-specialists
to be able, and to enjoy, programming coordinated actions of distributed embedded
computer systems in a digital home. Remarks such as “I felt I could easily grasp the
basic principles”, from participants with no programming skills at all were particu-
larly encouraging as such people were a key target of our end-user programming of
digital homes work.

Finally, this chapter has set out to explain what end-user programming is, how
it can be implemented and the benefits it can offer occupants of future high-tech
homes. Whilst this chapter has argued strongly in favour of end-user programming
and, especially, programming-by-example the future is rarely so ‘black and white’
and it is likely that solutions will be hybrids of many ideas. However, we feel pas-
sionately that whatever final solutions emerge, they should to recognise the human
condition by addressing the fundamental needs of people to be creative and to pro-
tect their privacy.

Acknowledgements

We wish to thank Martin Colley (Essex University), Hani Hagras (Essex University),
Malcolm Lear (Essex University), Phil Bull (BT), Rowan Limb (BT), Brian John-
son (Intel) for their role in encouraging and motivating this work in various ways,
not least by their stimulating discussions and papers. In addition we are pleased
to acknowledge the DTI (Next Wave Technologies and Markets programme) who
funded the original phase of the work, Chimera (Institute for Socio-Technical Re-
search) who advised on the evaluation and, finally, Essex University who funded the
PhD scholarship.

References

[1] Augusto, Juan Carlos; Nugent, Chris D. (Eds.) Designing Smart Homes: The
Role of Artificial Intelligence, http://www.springer.com/series/558Lecture
Notes in Computer Science , Vol. 4008, 2006, ISBN: 978-3-540-35994-4

[2] O. Babaoglu et al., Anthill: A Framework for the Development of Agent-based
Peer-to-Peer Systems, 22nd International Conference on Distributed Comput-
ing Systems, 2003.

[3] Mathias Bauer, Dietmar Dengler, Gabriele Paul, Markus Meyer, Programming
by example: programming by demonstration for information agents, Commu-
nications of the ACM, Volume 43, Issue 3 (March 2000), pp.98 – 103

404 Jeannette Chin, Victor Callaghan and Graham Clarke

[4] Berners-Lee T, Hendler J, Lassila O. The Semantic Web, Scientific American,
May 2001

[5] Barkhuus, L., Vallgårda, A: Smart Home in Your Pocket, Adjunct Proceedings
of UbiComp 2003 (2003) 165–166

[6] Alan F. Blackwell, Rob Hague, Designing a Program Language for Home Au-
tomation, in G.Kadoda (Ed). Proc PP1G 2001 pp. 85–103.

[7] Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern and Steven
A.Shafer, EasyLiving: Technologies for Intelligent Environments, Proc of the
2nd international symposium on Handheld and Ubiquitous Computing, 2000,
12–29

[8] Callaghan V, Clark G, Colley M, Hagras H Chin JSY, Doctor F Intelligent
Inhabited Environments, BT Technology Journal , Vol.22, No.3 . Klywer Aca-
demic Publishers, Dordrecht, Netherlands, July 2004

[9] Callaghan,V., Chin, J.S.Y., Shahi, A., Zamudio, V., Clarke,G.S., Gardner,M.,
'Domestic Pervasive Information Systems: End-user programming of digital
homes', Journal of Management Information Systems, Special Edition onPer-
vasive Information Systems (volume editors Panos Kourouthanassis; George
Giaglis), 24:01 (December 2007) pp.129–149 (inc), ME Sharp (New York),
ISBN: 978-0-7656-1689-0

[10] Callaghan V, Clarke G, Chin J Some Socio-Technical Aspects Of Intelligent
Buildings and Pervasive Computing Research, Intelligent Buildings Interna-
tional Journal, Vol 1 No 1, Published Autumn 2008, ISSN: 1750-8975, E-
ISSN: 1756-6932

[11] Chen H,; http://ebiquity.umbc.edu/v2.1/person/html/Tim/Finin/Finin T,;
http://ebiquity.umbc.edu/v2.1/person/html/Anupam/Joshi/Joshil A. SOUPA:
Standard Ontology for Ubiquitous and Pervasive Applications, Int’l Confer-
ence on Mobile & Ubiquitous Systems: Networking & Services (MobiQuitous
2004), Boston, Massachusetts, USA, August 22–26, 2004

[12] G. Chen and D. Kotz. A survey of context-aware mobile computing research,
Paper TR2000-381, Department of Computer Science, Darthmouth College,
November 2000.

[13] Chin J, Callaghan V, Clarke G, A Programming-By-Example Approach To Cus-
tomising Digital Homes IET International Conference on Intelligent Environ-
ments 2008, Seattle, 21-22 July 2008

[14] Chin J, Callaghan V, Clarke G, Soft-appliances: A vision for user cre-
ated networked appliances in digital homes, Journal of Ambient Intelligence
and Smart Environments 1 (2009) 65–71, DOI 10.3233/AIS-2009-0010, IOS
Press, 2009

[15] Kook Hyun Chung, Kyoung Soon Oh, Cheong Hyun Lee, Jae Hyun Park,
Sunae Kim, Soon Hee Kim, Beth Loring, Chris Hass, A User-Centric Ap-
proach to Designing Home Network Devices, CHI '03 extended abstracts on
Human factors in computing systems, 2003, 648 – 649

[16] D.J. Cook, M. Huber, K. Gopalratnam and M. Youngblood, Learning to Con-
trol a Smart Home Environment, Innovative Applications of Artificial Intelli-
gence, 2003

End-user Customisation of Intelligent Environments 405

[17] http://www.springerlink.com/content/?Author=Diane J. CookDiane J. Cook,
http://www.springerlink.com/content/?Author=Michael YoungbloodMichael
Youngblood and http://www.springerlink.com/content/?Author=Sajal K. Das-
Sajal K. Das A Multi-agent Approach to Controlling a Smart Environment,
pp 165–182, in Designing Smart Homes: The Role of Artificial Intelligence,
ISBN 978-3-540-35994-4, July 2006

[18] Coolican H. Research Methods and Statistics in Psychology (2nd Edition) Hod-
der and Stoughton, 1994

[19] Cypher A, Halbert DC, Kurlander D, Lieberman H, Maulsby D, Myers BA,
and Turransky A, Watch What I Do: Programming by Demonstration, The
MIT Press, Cambridge, Massachusetts, London, England 1993

[20] DiDuca D and Van Helvert J. User Experience of Intelligent Buildings; A User-
Centered Research Framework, Intelligent Environments 2005, Essex, 28-29th

June 2005
[21] N. Dulay, S. Heeps, E. Lupu, R. Mathur, O. Sharma, M. Sloman and and J.

Sventek, AMUSE: Autonomic Management of Ubiquitous e-Health Systems,
Proc. UK e-Science All Hands Meeting, Nottingham, Sept. 2005

[22] Duman H, Callaghan V, Hagras H, Intelligent Association Selection of Em-
bedded Agents in Intelligent Inhabited Environments, Journal of Pervasive and
Mobile Computing, vol. 3, issue 2, 2007, 117–157

[23] Gajos K., Fox H., Shrobe H., End User Empowerment in Human Centred
Pervasive Computing, http://www.pervasive2002.org/Pervasive 2002, Zurich,
Switzerland, 2002

[24] Halbert D.C. SmallStar: Programming by Demonstration in the Desktop
Metaphor, Watch What I DO, MIT Press. 1993

[25] V.Haarslev and R. Moller, Description of the RACER system and its appli-
cation, In proceedings International Workshop on Description Logics (DL-
2001), 2001

[26] Hague, R., et al: Towards Pervasive End-user Programming. In: Adjunct Pro-
ceedings of UbiComp 2003 (2003) 169–170

[27] Humble, J. et al Playing with the Bits, User-Configuration of Ubiquitous Do-
mestic Environments, Proceedings of UbiComp 2003, Springer-Verlag, Berlin
Heidelberg New York (2003), pp 256–263

[28] Johnson B, Callaghan V, Gardner G Bespoke Appliances for the Digital Home
IET International Conference on Intelligent Environments 2008, Seattle, 21–
22 July 2008

[29] Kainulainen L Reasoning in The Smart Home, AIOME, 2006
[30] C. Kidd, R. Gregory, A. Christopher, T. Starner. The Aware Home: A Living

Laboratory for Ubiquitous Computing Research, In Proceedings of the Sec-
ond International Workshop on Cooperative Buildings (CoBuild’99), October
1999

[31] Lieberman H., Bonnie A. Nardi and David J. Wright, Training Agents to Rec-
ognize Text by Example, Proceedings of the third annual conference on Au-
tonomous Agents, Seattle, Washington, United States, 1999, pp 116 – 122

406 Jeannette Chin, Victor Callaghan and Graham Clarke

[32] Lieberman H, Your wish is my command, Program by Example, Morgan Kauf-
mann press, 2001.

[33] Masuoka R,; Parsia B,; Labrou Y. Task Computing – the Semantic Web meets
Pervasive Computing, 2nd Int’l Semantic Web Conf (ISWC2003), 20-23 Oct
2003, Florida, USA

[34] M. Luck et al., Agent Technology: Enabling Next Generation Computing,
AgentLink II, 2003

[35] Mäyrä F, Soronen A, Vanhala J, Mikkonen J, Zakrzewski M, Koskinen I, Ku-
usela K, Probing a Proactive Home: Challenges in Researching and Design-
ing Everyday Smart Environments, Human Technology Journal, Volume 2 (2),
October 2006, 158–186

[36] J. McCann, P. Kristoffersson and E. Alonso, Building Ambient Intelligence into
a Ubiquitous Computing Management System, Proc. International Symposium
of Santa Caterina on Challenges in the Internet and Interdisciplinary Research
(SSCCII-2004), Amalfi, Italy, Jan. 2004

[37] McDaniel R., Demonstrating the hidden features that make an application
work, in Your wish is my command: programming by example, Morgan Kauf-
mann Publishers Inc. San Francisco, CA, USA , 2001, pp 163 – 174

[38] N. Minar, M. Gray, P. Maes. Hive: Distributed Agents for Networking Things,
In Proceedings of ASA/MA’99, the First International Symposium on Agents
Systems and Applications and Third International Symposium on Mobile
Agents, 1999

[39] Mozer, M. C. The neural network house: An environment that adapts to its in-
habitants In M. Coen (Ed.), Proceedings of the American Association for Ar-
tificial Intelligence Spring Symposium on Intelligent Environments (pp. 110–
114). Menlo, Park, CA: AAAI Press, 1998

[40] Myers B.A., Creating user interfaces using programming by example, vi-
sual programming, and constraints, ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), Volume 12 , Issue 2 (April 1990), pp 143 –
177

[41] O'Neill, E. and Johnson, P. (2004) Participatory Task Modelling: users and de-
velopers modelling users' tasks and domains, 3rd International Workshop on
task models and diagrams for user interface design (TAMODIA 04). Prague,
Czech Republic, 15–16th November 2004

[42] Oppenheim, A N. Questionnaire Design, Interviewing and Attitude Measure-
ment Pinter Publishers Ltd, 1992

[43] Carsten Röcker, Maddy D. Janse, Nathalie Portolan and Norbert Streitz, User
Requirements for Intelligent Home Environments: A Scenario-Driven Ap-
proach and Empirical Cross-Cultural Study, Joint sOc-EUSAI conference,
2004, 111–116

[44] B. Schilit, N. Adams, and R. Want. Context-aware computing applications, In
Proceedings of the 1st International Workshop on Mobile Computing Systems
and Applications, 1994

[45] Smith, D. C., Pygmalion: A Computer Program to Model and Stimulate Cre-
ative Thought, (1975 Stanford PhD thesis), Birkhauser Verlag. 1977.

End-user Customisation of Intelligent Environments 407

[46] Sugiura A,Koseki Y. Internet scrapbook: automating Web browsing tasks by
demonstration Proceedings of the 11th annual ACM symposium on User inter-
face software and technology, San Francisco, California, United States, 1998,
pp.9–18

[47] Truong, KN.et al CAMP: A Magnetic Poetry Interface for End-User Program-
ming of Capture Applications for the Home, Proceedings of Ubicomp 2004,
pp 143–160.

[48] Vastenburg M, SitMod: a tool for modelling and communicating situations,
Second International Conference, PERVASIVE 2004, Vienna Austria, April
21–23, 2004, ISBN: 3-540-21835-1

[49] Wang Z, Garlan D. Task-Driven Computing, Technical Report, CMU-CS-00-
154, Computer Science, Carnegie Mellon University, May 2000

[50] Zamudio V and Callaghan V, Facilitating the Ambient Intelligent Vision: A
Theorem, Representation and Solution for Instability in Rule-Based Multi-
Agent Systems, International Transactions on Systems Science and Applica-
tions, Volume 4, Number 2, July 2008

[51] Young Zou, Harry Chen, and Tim Finin, F-OWL: an Inference Engine for
Semantic Web, Proceedings of the Third NASA-Goddard/IEEE Workshop on
Formal Approaches to Agent-Based Systems, 26 April 2004

[52] http://agentsheets.com/products/index.html
[53] http://jena.sourceforge.net/
[54] http://www.networkinference.com/Products/Construct.html
[55] http://www.lisi.ensma.fr/ihm/index-en.html
[56] http://pervasive.semanticweb.org/soupa-2004-06.html
[57] http://www.stagecast.com/creator.html
[58] http://www.toontalk.com/
[59] http://iieg.essex.ac.uk/dcomp/ont/dev/2004/05/
[60] http://www.w3.org/Submission/2004/07/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

