The PERSONA Service Platform for AAL
Spaces

Mohammad-Reza Tazari and Francesco Furfari and Juan-Pablo Lazaro Ramos and
Erina Ferro

1 An Introduction to the PERSONA Project

The project PERSONA aims at advancing the paradigm of Ambient Intelligence
through the harmonization of Ambient Assisted Living (AAL) Technologies and
concepts for the development of sustainable and affordable solutions for the inde-
pendent living of senior citizens. PERSONA is one of the integrated projects funded
by the European Commission within the 6th Framework Program for IST (Informa-
tion Society Technologies) on AAL for the Aging Society. It involves the partici-
pation of 21 partners, from Italy, Spain, Germany, Greece, Norway and Denmark,
with a total budget of around 12 million Euros.

Ambient Assisted Living (AAL) is the concept that groups the set of technologi-
cal solutions, named AAL Services, targeting the extension of the time that elderly
and disabled people live independently in their preferred environment, i.e. their own
four walls, neighborhood and town where they are used to live [1]. AAL Services
provide personalized continuity of care and assistance, dynamically adapted to the
individual needs and circumstances of the users throughout their lives.

The main objective of PERSONA is the development of a scalable open standard
technological platform to build a broad range of AAL Services. A number of AAL
Services are being implemented over such a platform in order to demonstrate, test
and evaluate their social impact and potential exploitation scenarios. AAL Services

Mohammad-Reza Tazari
Fraunhofer-IGD, Darmstadt, Germany e-mail: saied.tazari@igd. fraunhofer.de

Francesco Furfari
CNR-ISTI, Pisa, Italy e-mail: francesco.furfari@isti.cnr.it

Juan-Pablo Lazaro Ramos
ITACA-TSB, Valencia, Spain e-mail: jualara@upvnet.upv.es

Erina Ferro
CNR-ISTI, Pisa, Italy e-mail: erina.ferro@isti.cnr.it

H. Nakashima et al. (eds.), Handbook of Ambient Intelligence and Smart Environments, 1171
DOI 10.1007/978-0-387-93808-0_43, © Springer Science+Business Media, LLC 2010

1172 M.R. Tazari, F. Furfari, J.P. Lazaro, E. Ferro

under development are divided into four different categories according to an analysis
of elderly needs in regard to a life with the highest level of independence:

* AAL Services supporting social inclusion and experience exchange,

* AAL Services supporting elderly users in their daily life activities,

* AAL Services supporting elderly people to feel more confident, safe and secure,
and helping their relatives to manage risky situations, and

AAL Services fostering mobility and supporting elderly people outside their
homes.

Figure 1 shows an example of a scenario where the user is supported to live in a
more confident, safe and secure way. It shows how the home environment is able to
detect potential risky situations, and to propose actions to the user for mitigating the
risks. The interaction mechanisms between the user and the system are compliant
with the paradigm of natural and contextual communication, in order to minimize
the impact on the user’s life.

] o
) YOUHAVELEFT s,
KITCHEN FIRE ON...
WITCHING IT OFF IN
PROCESS

. ‘WATER ON FLOOR DETECTED..@
@ PLEASE, BE CAREFUL

?‘ CLOSING KITCHEN WATER SUPPLY

|\

\/ﬂ
GAS SCAPE DETECTED... ‘——fﬁ.
S/ SUPPLY HAS BEEN SWITCHED OFF AND — _
GAS COMPANY HAS BEEN WARNED
» PLEASE STAY IN THE LIVING ROOM, THE
- HOUSE WINDOWS ARE BEING OPEN

Fig. 1 Virtual scenario of AAL Services related to support elderly people to feel safe and secure

The targeted AAL technological platform is expected to be developed under the
umbrella of a reference architecture for AAL spaces and AAL service provision as
the main scientific and technological outcome of the project. The reference archi-
tecture of PERSONA for AAL systems has been designed to enable the smooth,
flexible and modular integration of service-providing components using appropri-
ate Information and Communication Technologies, and to create systems which are
cost-effective, reliable & trusted, and adaptable to the requirements of each specific
user within both the house and urban environments.

Of course, a such open reference architecture promotes its wide adoption by the
related R&D community when it can be used as a powerful tool to build affordable
AAL Services oriented to help elderly people to live independently. Hence, one

The PERSONA Service Platform for AAL Spaces 1173

of the most important challenges of PERSONA in the medium term is to transfer
the project’s results into a commercial scenario within two or three years. For this
reason, a number of resources are being spent in order to define the business strategy
to exploit the proposed scenarios into a real life market environment on a European
scale, where the different types of stakeholders participate and coordinate to provide
innovative, affordable, sustainable and effective AAL Services for elderly people.

2 Requirements on a Service Platform for AAL Spaces

To derive both user and technical requirements, we investigate in the following the
requirements on an AAL service platform from the view point of both the services
to be hosted and the users of such services.

2.1 User Requirements

An AAL Service is a composition of one or more functionalities that covers specific
needs of elderly or disabled people, allowing them to live more independently. It en-
sures the continuity of care along the time and in the preferred environments (home,
neighborhood, village, also named AAL Spaces) by using an Ambient Intelligence
infrastructure that provides the basis for service development and deployment.

Before starting to list the requirements on such an ambient intelligence infras-
tructure, also known as AAL Service Platform, we would like to analyze the re-
quirements of end users on the final AAL Services to be delivered to them. In the
scope of PERSONA, end users are elderly people. Alone this fact has a lot of impli-
cations in terms of both coverage of needs and service delivery, because the targeted
services involve technologies that are unusual or even unknown to this group of
users, at least within the early decades of the 21% century, and therefore can cause
lack of acceptance or even rejection.

Our analysis was based on the four categories of elderly needs (social integration,
support for daily life activities, support for feeling safe and secure, and mobility) as
the starting point, and targeted the realization of an ambient assisted living system
that covers those needs or minimizes their impact.

The sources of information used to gather the list of generic requirements for
AAL Services were:

ISTAG documents [7, 13] describing the Ambient Intelligence paradigm
ARTEMIS Strategic Research Agenda [2]

The AAL program [1]

PERSONA Project investigations with experts about elderly care and ethical
and legal issues.

1174

M.R. Tazari, F. Furfari, J.P. Lazaro, E. Ferro

The following list summarizes requirements derived from the combination and the
analysis of the above sources with focus on the development of AAL Services:

* General requirements

The new services must be as effective as the usual way of dealing with
situations

The user must be able to disconnect the service at all times

The system must not be designed as a full replacement of personal care by
relatives, neighbors or friends

The system should always take into account the current context of the user
in order to avoid inconsistency and ensure coherent service provision

It should be possible to easily add new functionalities and services to a
concrete physical infrastructure

It should be possible to add new devices to the system while enabling their
easy adoption and usage by the rest of the logical or physical components
Devices used for building up the ambient infrastructure should be “invis-
ible” as far as possible; in particular, installed sensors and those used in
wearables shall be hidden / unnoticeable

The automatic decisions of the system must have the user’s confirmation
and remain traceable for him/her

e User interaction with AAL Services

Services should conform to usability standards and apply design-for-all
with a focus on older adults

The system must be easy to learn

Adaptation: User Interfaces shall incorporate features for coping with ac-
cess impairments and capability changes due to aging

Communication with the user should be done in a consistent way when
using different modalities, such as voice, text, graphics, signals, actions,
and state changes

* Privacy and data management:

Data obtained must be relevant for the purposes of the service and from
early design stages, emphasis must be put on the necessity of including
data items

The user shall be able to prevent devices from gathering information about
him/her at any time he/she wishes

For various purposes, such as provision of services and information, exer-
cise of rights, and gathering of data, the system must be able to authenticate
who the user is

Transmission of data to third parties must be kept to a minimum and se-
curity of data transmission to external entities must comply with legal re-
quirements

The system shall allow the verification of access rights of third parties with
possibility for rectification, opposition and cancellation

The PERSONA Service Platform for AAL Spaces 1175

2.2 Technical Requirements

The most important deliverable of the PERSONA project is the AAL Service Plat-
form. Hence, for defining the technical requirements, which must correspond to the
targeted platform, we had to establish a common understanding of such a platform
for AAL services.

Normally, platform is understood as a framework on which applications (in this
case AAL services) may run. The framework may be very specific and tied to cer-
tain hardware and operating system or more open by abstracting those levels based
on a more generalized runtime environment, such as Java. Apart from the runtime
environment, the platform may readily provide services that perform various com-
mon functions in order to avoid duplicating efforts. For the purpose of interoper-
ability, a platform must also facilitate communication and collaboration between
various components, either application components or those providing the platform
services. Ontologies, communication protocols and data exchange formats can be
provided as part of such an interoperability framework. AAL systems, as applica-
tions of Ambient Intelligence, are highly distributed systems which increases the
importance of the interoperability framework.

In order to create a list of requirements based on the above understanding, we
explored the existing research initiatives in the field of ambient intelligence archi-
tectures and middleware implementations thoroughly at a national, European, and
international level. Finally, the most important inputs came from the research prior-
ities of ARTEMIS [2] in the fields of “Seamless Connectivity and Middleware” and
“Reference Designs and Architectures”, the SODAPOP notion of self-organization
[12], and even more specific initiatives such as the Jaspis architecture [25]. Some of
the more general requirements can be summarized as follows:

 guarantee a high-level of flexibility in the distribution of functionalities and
facilitate the integration of arbitrary numbers of sensors, actuators, control units,
appliances, and applications into the system

e support ad-hoc networking to enable components to immediately act as a node
in the networking infrastructure

* support different communication patterns, such as event-based and call-based

» provide service discovery and binding mechanisms: explicit service requests
must be resolved and responded as far as the corresponding service is available
per se

e support service chaining: meaningful continuation with (intermediate) results
reached / generated by one component in another component by discovery of
alternatives and choosing a reasonable next “step”

e provide mechanisms for event aggregation: seamless combination of events
generated / captured by different components in order to infer a possibly more
significant event

e support for parallel processing of events while detecting and resolving / pro-
hibiting possible conflicting interpretations and actions in favor of more reason-
able ones

1176 M.R. Tazari, F. Furfari, J.P. Lazaro, E. Ferro

* provide for service composition and orchestration: serving explicit service re-
quests that cannot be resolved directly but by intelligent strategy planning al-
gorithms that use simpler services available as building blocks to compose the
demanded service. To serve the original service request, the composed service
must then be executed!

» facilitate the explicit user interaction with the system while separating the pre-
sentation mechanism from application logic and supporting multimodality in an
ensemble of devices distributed at different locations

 support personalization and context-awareness in all layers of the system and
adaptability in the presentation layers

¢ hide the complexity of utilizing services from the users accessing them (cf. the
SET concept of eMobility?)

* provide for identity management, privacy-awareness, and QoS-awareness

e follow a modular design to better support distribution and extensibility of
the system, higher maintainability / dependability, and greater possibility for
reusing existing and composing new functionality

e At the realization level, characteristics to be considered include stability and
diagnosis efficiency and performance, and completeness and simplicity of the
API

3 Evaluation of Existing Solutions

A declared goal of PERSONA is to avoid re-inventing the wheel in its technical de-
velopments, especially by identifying promising conceptual approaches while com-
bining them with the newest technological trends. The development of the platform
followed this principle using an appropriate methodology outlined in [3]. Starting
with the above mentioned requirements, over 30 R&D projects with promising so-
lutions in the fields of architectural design and middleware solutions for Aml sys-
tems were gathered. After two quick iterations for filtering out those with compar-
atively less significant outcomes, this list was reduced to six: Oxygen (launched by
MIT in 1999), EMBASSI/ DynAMITE (1999-2006, two German national research
projects introducing the SODAPOP model), RUNES (2004-07, EU-IST project),
Amigo (2004-08, EU-IST project), and ASK-IT (2004-08, EU-IST project). The
theoretical and practical evaluations (e.g. by testing the provided software toolkits)
showed that a combination of the concepts from the SODAPOP model and those
developed within Amigo could lead to an improved solution for AmlI systems. Sec-
tion 4 discusses different aspects of the PERSONA solution derived in this way. In

! The latter five requirements collectively facilitate self-organization of the distributed system in an
intelligent way, guaranteeing a higher level of service in comparison with using each of the nodes
in an standalone way.

2 The technology platform for mobile and wireless communications in the seventh framework
program of the European Union for the funding of research and technological development in
Europe — www.emobility.eu.org

The PERSONA Service Platform for AAL Spaces 1177

the remaining of this section, an overview of the two major “inputs” (SODAPOP &
Amigo) will be given followed by a discussion of our evaluation results.

A system built according to the SODAPOP? model [11, 12] consists of two types
of components: transducers and channels. Transducers read one or more messages
during a time interval and map them to one (or more) output message(s). They are
the functional units of the system that may have a memory and accept messages
selectively. They provide for temporal aggregation of multiple input messages to a
single output message. A transducer may attach to multiple channels; they, in turn,
read a single message at a point in time and map them to one or more messages
which are delivered to transducers (conceptually, without delay). Channels can be
realized within a middleware solution and may be seen as the “cutting points” for
distributing a. They have to accept every message and provide for spatial distribution
of a single event to multiple transducers. Channels accept (and deliver) messages of
a certain type t, transducers map messages from a type t; to a type to. A system is
defined by a set of channels and a set of transducers connecting to channels. There
are two types of channels: event-channels, on which messages are posted without
expecting any reply, and RPC-channels, on which posted messages will be replied
with an appropriate response. Events and RPCs are (in general) posted by trans-
ducers to channels without specific addressing information: in a dynamic system,
a sender never can be sure which receivers are currently able to process a mes-
sage. It is up to the channel to identify a suitable (set of) receiver(s) as the result
of its arbitration. How this process of choosing the receiver set works is defined
by the channel’s strategy. The channel strategy must ensure that message routing is
transparent to transducers, no matter if the message contains an event, a call or a re-
ply. This has the following effects: a) a coarse-grained self-organization is achieved
based on data-flow partitioning through the definition of several channels to which
transducers may attach, b) a fine-grained self-organization for functionally similar
transducers is achieved by channel strategy based on a kind of “pattern matching”
approach, c) transducer designers are relieved from the burden of dealing with the
distribution of functionality and from the task of finding and selecting the appropri-
ate receiver set, and d) the risk of misbehaved transducers that, e.g., always select
the receivers from the same vendor is minimized.

The architecture of Amigo [14, 23] is based on a special view on a logical soft-
ware layer in computing units called the middleware layer that is placed between
the platform layer (comprising the operating system and the networking facilities)
and the application layer. This way, the middleware is not a single piece of software
responsible for ensuring seamless connectivity and interoperability but exists only
logically comprising all the Amigo platform services that provide common general-
purpose functions. On a more abstract level, Amigo identifies the need for context
information to be accessible from all three layers while the application and the mid-
dleware layers require privacy and security services. An enriched platform layer
may provide some support for the quality of service (QoS) and info on reusable
resources and device capabilities. An enriched middleware layer uses the resource

3 Self-Organizing Data-flow Architectures suPporting Ontology-based problem decomPosition —
www.igd.fhg.de/igd-al/projects/sodapop/sodapop.zip

1178 M.R. Tazari, F. Furfari, J.P. Lazaro, E. Ferro

constraints and device capabilities to provide QoS support and may turn the service
discovery into a semantic, QoS-aware and context-aware mechanism with support
for service composition. Finally, the service description on the application layer can
be enriched by semantic functional specification, syntactic and semantic QoS spec-
ification, and a context specification. The logical view on the middleware layer di-
vides it into two main blocks, namely the base middleware and the “intelligent user
services”. The former has a core part called the “interoperable middleware core”
that provides for service discovery and interaction while incorporating QoS param-
eters. On top of this core, diverse sub-components are suggested, such as mobility
management, billing, security & privacy, and even content storage and interoper-
ability. The “intelligent user services” comprise context management & notification
services, user modeling & profiling, and user interface services. A device capable
of being integrated into an Amigo environment is defined as a device that: a) im-
plements (a subset of) the abstract reference architecture employing specific tech-
nologies, b) provides some Intelligent User Services, and ¢) may implement some
interoperability methods for service discovery and interaction.
A comparison of the two solutions shows the following differences:

e The SODAPOP model provides a message brokering solution whereas the
Amigo solution is based on object brokering.

* In SODAPOP, the middleware is a piece of software that implements the dis-
tributed channels and is responsible for seamless connectivity and interoperabil-
ity among transducers. This view on the middleware is comparable with the “in-
teroperable middleware core” of Amigo, but the interesting thing in SODAPOP
is that all the common general-purpose functions to be provided by the integral
components of a concrete Aml system use the middleware the same way like
integrable components. This would mean that even such system services do not
enjoy any special privilege and may face competition and be substituted by al-
ternative realizations; a characteristic that guarantees a higher level of system
openness.

* Amigo uses modern approaches, such as service orientation and ontological de-
scription and match-making of services. Although SODAPOP also talks about
channel ontologies, but at the time its two realizations were developed, onto-
logical technologies were not mature enough so that those ideas were never
realized.

» Although service orientation was chosen as the fundamental principle in Amigo,
it provides the application layer with a special broker for context sources with
special protocols for supporting event-based communication. Similarly, the in-
teraction between human users and the system is handled specifically, e.g. with
special protocols for device selection. This is comparable with the definition
of several channels in SODAPOP, each responsible for a certain communica-
tion “field”. However, the SODAPOP approach was evaluated more positively
because of its inherent neutrality in modularization of such communication
“fields” that allows for modular specification of ontologies, protocols and strate-
gies.

The PERSONA Service Platform for AAL Spaces 1179

* The comprehensive set of system services proposed by Amigo can be used as a
good basis for deriving the set of PERSONA platform services.

4 The PERSONA Architectural Design

Based on the analysis presented above, PERSONA chose the following strategy for
deriving a reference-architecture for Aml systems:

» rely on the bus*-based architecture of SODAPOP,

 simultaneously adopt the service-orientation and the ontological approach of
Amigo in service discovery, match-making, and composition, and still

 examine the set of integral system services to be considered within the architec-
tural model based on proposals made by Amigo and even other solutions.

In the following subsections, we present the results of this process leading to a
proposal for a reference-architecture for AAL spaces.

4.1 The Abstract Physical Architecture

A vision of ambient intelligence is that distributed functionality embedded in ap-
pliances, controllers, actuators and sensors should be utilized seamlessly and made
available to the human users based on natural interaction paradigms. This leads
immediately to the intuitive conclusion that an AAL space is an open distributed
system that can be modeled as a dynamic ensemble of networked nodes (see figure
2), where each of the nodes may be such a networking enabled physical component,
as a sensor, an appliance / a consumer electronic device, a controller, an actuator,
or a full-scaled computing device like a PC. As shown in figure 2, we call the glu-
ing software facilitating the integration of, and the collaboration among the nodes
through support for seamless connectivity and enabling interoperability the middle-
ware that each node must bind in order to play a role in the ensemble, i.e. utilize
and/or offer functionality.

A point to consider here is that at least in case of general-purpose computing de-
vices, such as PCs, a physical node may host several logical components, each with
certain functionalities. So, when zooming in on each node, a question is how such
logical components may bind the middleware. Figure 3 shows different scenarios
in this regard and in regard to wrapping legacy nodes / components®. It is worth to
mention that in case of node #1 of figure 3, it will act as two separate nodes even
if it is a single physical node, because each instance of the middleware represents a
distinct “node” in the ensemble.

4 The term “communication bus™ (or shorter “bus”) was preferred to the original SODAPOP term
“channel”.

3 See section 5 for the PERSONA standard solution for wrapping thin components like sensors.

1180 M.R. Tazari, F. Furfari, J.P. Lazaro, E. Ferro

apou

Fig. 2 An ensemble of networked nodes arranged whether with infrastructure (left) or ad-hoc
(right)

[middieware | [micdieware
\\ / \\ middleware
[wrapper Y [wrapper |
wo e mg,w \ /
‘ middleware ‘ ‘ middleware ‘ | middleware | \\ // \ }// ‘ componenl } wrapper \
i g Node #3] Nodo #d|
/ Inglcal\ / Iugmal\ ,/lagical \ / lugical\\ ot _ o \ / \\ /
| | | 2 Rs232
#2 Vows) L cable
\ / \ /‘ \ // \ / hosted
e — lagacy node #1 legacy noda #2 legacy #3
Node #1 Node #2 {tcpiip enabled) (RS232 enabled) NaaEes)

Fig. 3 Different scenarios of hosting logical components and wrapping legacy nodes / components

The project also made the following decisions in the early design stages:

* PERSONA goes for ad-hoc networking based on existing node discovery solu-
tions, such as UPnP and Bluetooth.

e As per definition in [15], middleware is responsible for “hiding the heterogene-
ity of the various hardware components, operating systems and communication
protocols”, we decided to rely on the existence of a Java virtual machine pro-
viding the needed abstraction.

e In order to facilitate the sharing of the middleware within nodes in such cases
as depicted by nodes #2 and #5 in figure 3, the OSGi dynamic module system
for Java® was chosen.

4.2 The Interoperability Framework

According to the SODAPOP model, for the specification of a system it would be
sufficient to a) determine the set of its communication buses, b) specify the ontol-
ogy, protocol, and strategy for each bus, and c) identify the set of components that

6 See www.osgi.org.

The PERSONA Service Platform for AAL Spaces 1181

connect to them. For a reference-architecture, however, the steps 2 and 3 may be
taken only partially in order to address a class of systems, which in the PERSONA
case would be the class of Aml systems for AAL spaces.

With this understanding of the striven reference architecture, it would be possible
to limit the specification in its second step to the specification of an upper ontology
shared in the corresponding class of systems and in its third step to the identifi-
cation of only those components that are shared among all of the instances of the
corresponding class of systems as mandatory or recommended components. To be
compliant with such a reference-architecture, a concrete system realizing concrete
use cases must then employ the shared specifications, enhance the ontology on each
bus according to its needs and add components that are needed for the realization of
its use cases.

To initiate the derivation of the targeted architecture, we now refer to another
guideline from the beginning of this section, namely the adoption of the SOA-based
approach of Amigo. The question that arises is: does service-orientation mean that
we should have an abstract view on all functionalities as services and consequently
define only one bus, say a “service” bus? The answer to this question has been
already given in section 3: even Amigo has developed special-purpose brokering
frameworks for handling contextual events and user interaction. PERSONA has also
decided to abstract all functionality other than those related to the above two topics
as “service” and consequently to provide a set of four communication buses, namely
the context, input, output, and service buses. Referring to the SODAPOP model that
provides an event-based class of buses and a call-based one, we defined the first
three buses event-based and the service bus call-based (cf. figure 4).

user interaction communication needs

events ol]

inter-component communication needs

Fig. 4 The PERSONA set of communication buses responsible for brokering four rough types of
messages

The rationale behind the type of the context and service buses is self-explanatory.
In case of the input and output buses, one may pose the remark about sufficiency

1182 M.R. Tazari, F. Furfari, J.P. Lazaro, E. Ferro

of one call-based bus instead of two event-based buses. It seems that from the view
point of the user an input may be handled like calling a system function that may
be followed by some system output as the corresponding response. Similarly, sys-
tem output can be viewed as if the system is calling the user to give his/her answer.
Although such a solution is not disqualified from our point of view, but we chose
the other alternative due to the following concerns: In addition to a special timeout
handling that comes into play when the user is expected to react to a system out-
put, the fact that the communication between the user and the system is handled by
components that bridge the gap between the virtual world of the system and the real
world of the user have to be considered. Hence, on both sides of the I/O buses there
are virtual components that in case of the input bus are responsible for either captur-
ing user input or processing it in the context of a dialog. Similarly, the components
attached to the output bus generate the system output on one side, and present it to
the user on the other side. Generally, it seems that only components that process
the user input and / or generate system output in the context of a dialog are able to
decide about the direction of the communication, i.e. if the system is being called by
the user or the system is calling the user. Additionally, the strategy for dispatching
a captured user input posted to the input bus to input processing components inter-
ested in that input can be designed in a specific way that differs from the output bus
strategy. In the next section we will get back to this issue again.

Another discussion point is that if both the input bus and the context bus are
event-based buses that capture some event in the real world, either by sensing or
by capturing explicit user intervention, why not merge them into one bus as it was
the case in DynAMITE [12]. Also here we have a preference for separating the
two buses in order to have a more modular approach in the development of the bus
ontologies, protocols and strategies. Factual concerns for doing so are twofold: ex-
plicit user interaction in Aml environments necessitates a special treatment because
it happens in an openly distributed I/O handling environment with possibility of
merging several modalities while following the user, e.g. from one room to the next
one. Additionally, user input in contrast to sensory data may follow in the context
of a dialog.

Adding the four identified buses to the simplified physical view of a PERSONA
system from the previous section results in a scene depicted by figure 5. Compo-
nents must be linked with the middleware that realizes the four buses — on the left
side, the example of a node in the ensemble hosting three components that share
the same instance of the middleware connecting to different buses with different
roles — and instances of the middleware can find each other and collaborate, result-
ing in virtually connected communication buses over all of the participating nodes
and components. That is, through the cooperation of different instances of the mid-
dleware, local pieces of the same bus will find each other and so will be able to
cooperate with each other based on strategies specific to each bus. This way, the
middleware can hide the physical distribution of functionality within the ensemble.

This means that the interoperability framework in PERSONA can be summarized
as shown in figure 6. The communication buses reflect the loose connections needed
in a dynamic environment and represent, in a modular way, the need for interface /

The PERSONA Service Platform for AAL Spaces 1183

input bus
component;

spou

component2

middleware

Fig. 5 The distributed communication buses of PERSONA and the formation of virtually global
buses

ontology definitions, protocol specifications for communication, and strategies for
“dispatching incoming messages” to an appropriate (set of) receiver(s). A compo-
nent simply registers to some buses by specifying the role(s) it is going to play
on each of them. Possible roles for a registering component on an event bus are
publisher and subscriber; possible roles on the service bus are caller (or service
client) and callee (or service provider). Based on this terminology, figure 6 further-
more identifies groups of similar functional roles in such an Aml system and their
dependencies, without specifying any concrete component. It guarantees the coher-
ence of the system by modeling the basic data flow in Aml systems: The explicit
user input through input publishers and the contextual / situational events posted
by context publishers trigger dialogs that will finally terminate with explicit system
output through output subscribers and / or changes in the environment performed by
appropriate service providers. The dialog handlers (formally equivalent to simulta-
neously playing some of the roles of input and context subscriber, output publisher,
and service client) are therefore responsible for the behavior of the whole system.
The horizontal arrows attached to the vertical buses symbolize the availability of
services and context in the whole system, independent from any layering. For ex-
ample, the input and output layers may access the s-bus for utilizing transformation
services, such as automatic speech recognition or text-to-speech, and the dialog han-
dling layer accesses the s-bus, mainly for procurement of application services to the
user.

4.3 The PERSONA Platform Services

A reference-architecture may specify a set of mandatory / recommended compo-
nents shared in the whole class of systems complying with that architecture. As dis-
cussed earlier, the set of the PERSONA platform services is determined by not only

1184 M.R. Tazari, F. Furfari, J.P. Lazaro, E. Ferro

-
o I Ia (034 Op)
o i 0 ol
o 5 D; De > «n

Functional roles | Communication buses

input publisher « 1 | i — input event
output subscriber « O | 0 — output event
dialog handler « D
context publisher «— C | ¢ — context event
service provider « S | s — service call

Fig. 6 The abstract interoperability framework in PERSONA

relying on the specific use cases from the PERSONA scenarios but also checking
such results against the platform services in other solutions, like Amigo, ASK-IT,
EMBASSI, and RUNES. However, it showed very quickly that this should not be
set equal to the set of all functions that are shared somehow but the number of the
related components must be kept manageable towards the definition of a basic con-
figuration for AAL spaces. Hence, even borderline cases such as contact lists and
personal calendars whose services are widely shared at least in private AAL spaces
are considered as pluggable components in PERSONA. The criteria for considering
a component as an integral part of all AAL spaces were therefore twofold: a) the
component does something towards producing aggregated added value’, and / or
b) it plays a complementary role for the function of the middleware. This way, we
came up with the following set of components:

e First of all, an application-independent component is needed that handles the
system-wide dialogs and hides the complexity of utilizing the application ser-
vices from the user (e.g. hierarchical presentation of the services available to
the user, supporting some sort of search for services, or handling login dialogs).
It should be obvious that this component has to be a dialog handler (in the sense
of the functional roles discussed in the previous section); therefore it is called
the Dialog Manager. Another important task for the Dialog Manager could be
the provision of a mechanism for associating service calls with situations as
means for providing a configurable management of the reactivity of an Aml

7 In a modular and dynamically evolving system, it is essential to be able to utilize the whole
potential of the system on a meta-level that does not necessitate any sort of re-compile, re-build,
re-deploy, or restart of any other component when new components are added to or old ones are
removed from the system.

The PERSONA Service Platform for AAL Spaces 1185

environment. For this purpose, the Dialog Manager may rely on a configurable
repository of rules schematically in the form of “situation — action” (abbrevi-
ated as “s[i] — a[j]”). Then, it must subscribe to the context bus for all situations
s[i], for which it has an associated action «[j] in its repository. The association
“s[i] — a[j]” is the heart of controlling system behavior and hence it will be very
advantageous to store it in a central configurable repository. An enhanced ver-
sion of the Dialog Manager can additionally a) initiate dialogs for pro-actively
suggesting services that seem to fit to the current situation and b) offer services
to other components for handling common dialogs with the user, such as ok-
cancel, warning and notifying.

* The Context History Entrepot® (CHE) gathers the history of all context events
in a central repository not only to fill the gap caused by context publishers that
provide no query interface, but also to provide a fallback solution for those
that cannot maintain the whole history of data provided by them. Additionally,
it guarantees the essential support to reasoners’ that perform statistical analy-
sis and need context stored over time'®. As a singleton component, the CHE
takes care of logging every context event that is published in the context bus
by specifying a “pass-all” filter when subscribing to the bus. In order to have
the growth of the repository under control, the CHE also implements a deletion
policy based on the likeliness of the data to be needed further on; the policies
consider a time-based threshold as well as the abstraction level of the data. For
making the context history available to context consumers, the CHE registers
to the service bus as a callee supporting some kinds of context queries, such
as full-fledged SPARQL!! queries. The latter is possible just because the CHE
relies on such a repository containing data from all possible sources.

* A general-purpose context reasoner called the Situation Reasoner that uses the
database of the CHE and infers new contextual info using the logical power of
the RDF query language SPARQL. It stores “situation queries” persistently — as
they are not meant as a one-time query that are answered and then forgotten, but
they must generate related situational events whenever the situation changes —
and indexes them based on context events that must trigger its evaluation. It pro-
vides two services on the service bus, one for accepting new situation queries
and the other for dropping them. These services are also used by a graphically
interactive tool for administrators in order to facilitate the introduction of new
relevant situations to the system by providing an overview of existing context

8 For a more detailed discussion on the PERSONA framework for supporting context-awareness
please refer to [8].

9 Context reasoners estimate the state of some context elements by combining different known
information and applying certain methods of aggregation, statistical analysis and / or logical de-
duction.

10 Many of reasoners that predict context need even long term histories that pluggable context
providers may not be able to maintain, as discussed in [17]

1T SPARQL Protocol and RDF (Resource Description Framework, www.w3.0rg/RDF) Query Lan-
guage specified as part of the Semantic Web technologies in the context of OWL (Web Ontology
Language, www.w3.0rg/2004/OWL/), www.w3.0rg/2001/sw/DataAccess/.

1186 M.R. Tazari, F. Furfari, J.P. Lazaro, E. Ferro

providers, allowing drag-and-drop interaction using artifacts for accessible con-
text elements, catching logical errors made by the user, and generating the ap-
propriate SPARQL query string, to name a few of its features. The SR takes its
name from a modeling theory for situations introduced in [22].

» Services may exist only at a meta-level in terms of “composite” services made

from combining really-existing “atomic” services. The Service Orchestrator
(SO) is the component in charge of interpreting the metadata describing a com-
posite service and performing the instructions within it. These descriptions are
added / removed / modified by a GUI for system administrators. The SO reg-
isters the composite services to the bus like any other service callee would do
so for its atomic services. This way, whenever a composite service is called on
the service bus, the bus will find the SO as the only object that “implements”
that service; hence the SO implements the callee interface for handling service
requests. At this stage, the SO starts to execute the corresponding composite
service by calling the sub-services through its capabilities as a caller until it fin-
ishes and then returns the results to the bus that will forward them to the original
caller.
Summarizing the admin tool aspect so far, it is worth to mention that three
repositories must be kept configurable for administrators of AAL spaces: a) the
database of the Situation Reasoner regarding “conditions — situation” rules,
b) the database of the Dialog Manager regarding “s[i] — a[j]” associations, and
¢) the database of the SO regarding composite services. This demonstrates the
total power of the PERSONA system regarding the generality, configurability,
and adaptability of the solution and also admits the necessity of such service
providers in the business model of PERSONA that are specialists in installation,
configuration, and maintenance of PERSONA-based AAL-spaces.

* In order to guarantee the adaptability of an AAL space to the wishes and prefer-
ences of its users, it is essential that a special-purpose component is foreseen for
the management of the profiles and the provision of needed shared mechanisms.
Almost all of the projects from the STAR analysis suggest such a component as
a mandatory one. Also the analysis of the realization of PERSONA use cases
confirmed this general assumption. We call this component the Profiling Com-
ponent.

e The middleware must control the access to services with the help of a compo-
nent that we call the Privacy-aware Identity & Security Manager (PISM) that is
also supposed to act as a service provider. The middleware must verify the legiti-
macy of components that register to its buses by consulting the PISM. Likewise,
trusted services serving anonymous entities must use PISM services in order to
decide if the data to be returned can be disclosed. Hence, the main responsibil-
ities of the PISM are: a) management of the entities’ identities and credentials,
b) management of permissions for accessing “hosted” services, c¢) providing au-
thentication services, and d) providing a tunable mechanism for deciding on the
disclosure of private data.

e In order to facilitate remote access to AAL spaces and, the other way around,
to support AAL spaces in notifying an absent native user, as well as to enable

The PERSONA Service Platform for AAL Spaces 1187

the bridging between AAL spaces and, furthermore, to provide a possibility for
external service providers to advertise their services to the occupants of AAL
spaces, we suggest to employ a special-purpose component called the AAL-
Space Gateway. The gateway provides access to the hosted services in the AAL
space under a fixed URL. For this purpose, it must act within the AAL space
as input publisher and output subscriber so that in case of incoming remote
access and after authentication, the remote user can start a dialog with the smart
home to access info and services for which he or she has the required access
rights. For each of the modalities supported by the gateway, it may register a
different input publisher to the input bus (resp. a different output subscriber to
the output bus). So, the gateway can make an SMS notification functionality
available to the output bus. If an output event is triggered on the output bus
that is addressed to an absent user, then the SMS output of the gateway may
be selected for presenting the output to the user as an SMS. The phone I/O of
the gateway can be utilized by the AAL space, if the absent user is required to
interact with the system rather than just being notified. This way, a voice-based
session will be initiated actively by the AAL space. Finally, external entities that
would like to make advertisement for their services may use an interface of the
gateway to be provided as a Web Service for this purpose. Then there must be
some authorization mechanism upon which the gateway can decide to ignore
or forward the notification to the user; if the authorization process fails, the
message will be ignored. Otherwise the gateway calls an appropriate service of
the Dialog Manager for notifying the user and hence must register to the service
bus as a service caller, too.

Figure 7 incorporates the above components into the logical interoperability frame-
work of PERSONA summarizing the discussions so far. To keep the figure well-
arranged, the pluggable components are shown as separate context publishers,
special-purpose reasoners, or service clients / providers although a component may
play several of these roles simultaneously. Also, the possibility for them to play
the role of a dialog handler is not depicted in this figure at all. Additionally, the
PISM is omitted from the scene due to the difficulty of showing its double role as a
sub-component of the middleware and as a service provider.

4.4 The Middleware

The middleware is composed of a set of OSGi bundles organized in three logical
layers (cf. figure 8):

* The lowest layer, the abstract connection layer (ACL), is responsible for the
peer-to-peer connectivity between instances of the middleware. Different dis-
covery and message transfer protocols, such as UPnP, R-OSGi or Bluetooth,
have been used to provide competing solutions that realize an exported inter-
face called P2PConnector. Listeners can register to such connectors for discov-

1188 M.R. Tazari, F. Furfari, J.P. Lazaro, E. Ferro

Voice / Voice / Java Macrome-
v |__Gesture GuI SWING. dia Flash
Input Bus /‘)Q\ /Output Bus
Special- < >
purpose Profiling A
Reasoners || .]
. —— ad" |
- Dialog —

§ ’ Situation Service ’

3 L ; Orchestrator |
i Context §
| > History .3 i
| Context Bus Service Bus :

Fig. 7 The PERSONA reference-architecture for AAL spaces

ering peers with a predefined interface. A bridging solution over all available
protocols guarantees the overall coherence of nodes within an ensemble.

* The Sodapop Layer implements the peer and listener interfaces from ACL and
registers as the local peer to all connectors found. It introduces the concepts of
bus (either event-based or call-based), bus strategy and message along with an
interface for message serialization.

e The PERSONA-specific layer implements the input, output, context, and ser-
vice buses with their distributed strategies according to the Sodapop protocol,
using an RDF serializer for the exchange of messages among peers.

[Application Layer J
put iber)| ishar Y(Ct bscriber) ServiceCafler) SenviceCaltes

Fig. 8 The internal architecture of the PERSONA middleware

The PERSONA Service Platform for AAL Spaces 1189

The context bus provides a lightweight communication channel which can be
used for publishing context events to local and remote end-points. Context pub-
lishers must find the OSGi service realizing the context bus and register to it (this
is readily done within a corresponding abstract class), in order to be able to pub-
lish context events. Context subscribers must additionally specify a filter for context
events they are interested in as their registration parameters. The context bus strategy
is as simple as broadcasting a received event to all peers, then each peer does a local
match-making with limited ontological inference capabilities for finding interested
subscribers. Therefore, the registration parameters of the subscribers are stored only
locally by each instance of the context bus. Alternatively, one single node could play
the role of a permanent coordinator that gathers all registration parameters from all
subscribers to all peers, where a peer that has received an event from a locally reg-
istered context publisher, would forward the event only to the coordinator which in
turn would forward the message only to those peers that had at least one local sub-
scriber interested in that event. Of course, other strategies are also possible, but in
the first version we chose the broadcasting strategy to avoid a single point of failure,
accepting the relatively increased messaging traffic.

On the service bus, callees provide service profiles in OWL-S!? at the registration
time. The callers request services using “service queries”. The service bus finds
the appropriate callee(s) by examining its repository of service profiles using the
same limited ontological inference as in case of the context bus, calls it (them) by
providing the required input extracted from the original query, gets the output and
prepares it as the response to be returned to the caller. The details of the service bus
strategy, however, go beyond the scope of this paper. Interested readers are invited
to read the project deliverable D3.1.1 at www.aal-persona.org.

In order to have a clear separation between application logic and presentation lay-
ers of the system, PERSONA distinguishes between handling dialogs and handling
1/O:

* A Dialog handler is a part of applications that expresses the application output
using a device-, modality- and layout-independent language (e.g., XForms that
has been found as a promising means in our experiments so far) and publishes it
to the output bus together with adaptation parameters fetched from the profiling
component. It then waits for the user input on the input bus expecting it at the
same abstraction level and in relation to the output previously published to the
output bus. The Dialog Manager is a special dialog handler provided by the
PERSONA platform.

e Each I/O handler manages a set of I/O channels and subscribes to the output
bus by specifying its capabilities, which is used by the output bus in the course
of match-making with adaptation parameters associated with each output event.
That is, using the adaptation parameters, the output bus tries to find a best-
match I/O handler that receives the content to be presented to the user along
with instructions in regard to modality and layout derived from the adaptation
parameters. The selected I/O handler is then responsible for converting the ap-

12 An OWL-based ontology for describing services. See www.daml.org/services/owl-s/.

1190 M.R. Tazari, F. Furfari, J.P. Lazaro, E. Ferro

plication output to the format appropriate for the channel selected in accordance
with received instructions. It then monitors its input channels to catch the related
user input. Upon recognized input, it must convert it to the appropriate format
in accordance to the previously handled application output and publishes it as
an event to the input bus.

e I/O handlers are application-independent, pluggable technological solutions
that manage their respective I/O channels to concrete devices using one or more
of the following alternatives:

— A tight connection using low-level protocols
— A loose connection using device services on the service bus
— A loose connection using contextual events on the context bus

» Context-free user input is handled by the Dialog Manager in terms of service
search; if an I/O handler detects user input that has no relation to any previous
output, the Dialog Manager receives the input and tries to interpret it as search
for services

4.5 The Ontological Modeling

Apart from the abstract classes InputPublisher, InputSubscriber, ..., and Service-
Callee shown in figure 8, the interfaces facilitating interoperability in PERSONA
are specified in terms of ontological concepts and their counterparts in the Java
world. This has been possible, because the APIs are defined in a way that the actual
information is exchanged as the content of SODAPOP messages.

In order to overcome the complexity of an open distributed system and still en-
able extensible interoperability, PERSONA has adopted / provided three elementary
tools: a) the knowledge representation technologies of the Semantic Web consist-
ing of RDF and OWL, b) an upper ontology with appropriate programming support
consisting of those concepts that all users of the middleware must know, and ¢) a
general conceptual solution described in section 5 with certain shared tools for inte-
grating thin devices and embedded sensors and transforming the tapped data into an
appropriate ontological representation. Using this framework, two end points that
share the same ontological concepts can achieve the needed level of interoperabil-
ity without the need for the middleware to know those concrete concepts. Still, the
middleware is able to adopt ontological reasoning, to some extent, in its brokerage
function.

Figure 9 summarizes the Java class hierarchy used by the middleware for han-
dling ontological resources. The class ManagedIndividual is the root of all ontology
classes that register to the middleware. This way, each instance of the middleware
will have a repository of ontological classes that are relevant for the local members
of its buses. The repository provides a mapping between class URIs and their Java
representation and enables the middleware to infer hierarchical relationships be-
tween the registered classes and check class memberships at Java level. This reveals

The PERSONA Service Platform for AAL Spaces 1191

the previously mentioned limitations of the ontological reasoning within the mid-
dleware: the limited knowledge stored about the underlying ontologies and match-
making to the extent supported by Java. The reason for this way of realizing the first
version of the middleware is to be spare of the resources needed by the middleware,
in order to reach the widest portability by keeping it as small as possible, even at
the level of Java 1.3. As a trade-off for these limitations, the middleware supports
not only the whole capacity of the OWL class expressions but also enhances it by
supporting more specific restrictions that can be posed on the properties of classes.
The OWL class expressions are used by subscribers to event-based buses as reg-
istration parameters for specifying their interests in certain classes of individuals.
Havng received a concrete event, an event-based bus checks if it matches!? any of
the registered class expressions; if yes, the corresponding subscriber will be noti-
fied. Also service callers specify their requests in terms of such class expressions,
which is used by the service bus in the course of match-making against registered
service profiles.

ServiceCall

ContextEvent
ServiceRequest PResource 4
Detproper‘ty(in propertyURI : String) : Object
l—l setProperty(in propertyURI : String, in value : Object) C attern
A
Managedindividual PCiassExpression 1 ‘ TypeURI
\ﬁﬁﬁ L 1
Comparableindividual
I Rating | } Enumeration } I tion } I } } Union I } Cumplsmanll
ContextProvider SII’I,‘IgReStrICtIOI‘I OrderingRestriction
_ icontains hasMaxvaucExdusic LocationRestriction
lendsWith |> - 4 -
hasValuelgnoreCase hasMaxValuelnclusive hasConnectionTo
PhysicalThing matches hasMinValueExclusive isAdjacentTo
- lstartsWith hasMinValuelnclusive

Fig. 9 The Java class hierarchy used and exported by the PERSONA middleware for handling
ontological resources

S Sensing the environment

The artifacts composing AAL-spaces can be classified in stationary, portable and
wearable components. The stationary artifacts run on a desktop PC, Set Top Box,

13 Here comes the ontological inferencing into play.

1192 M.R. Tazari, F. Furfari, J.P. Lazaro, E. Ferro

Residential Gateway or they belong to the environmental infrastructures like Home
Automation sub-systems; portable components are, for instance, medical devices or
mobile/smart phones. Garments equipped with sensors are examples of wearable
components. The PERSONA middleware targets small but reasonably powerful de-
vices, therefore not all the components can be integrated by using an instance of the
PERSONA middleware. Typically, the integration of wearable components as well
as nodes of wireless sensor networks (WSN) or Home Automation Systems (HAS)
requires a different approach because of their limited computation resources; in such
cases a gateway solution can be adopted, which allows the PERSONA application
layer to share information by communicating with other application layers resident
on different network infrastructures (e.g. ZigBee [4] or Bluetooth applications).
Considering the OSGi platform', it is sufficient to write a bridging component
that interacts with the PERSONA middleware, on one side, and with the software
drivers that access the networked devices, on the other side. However, it is worth to
notice that many Home Automation Systems have developed their proprietary so-
lution to provide external access to the networked devices. Usually it is possible to
find cut-of-the-shelf device servers that are themselves gateways, thus exposing the
network through standard protocols like TCP/IP or HTTP (e.g. Siemens EIB-TCP
gateway - http://www.eib-home.de/siemens-eib-ip-schnittstelle.htm). In this case an
easier integration is achieved through an application proxy that communicates with
the remote server rather than with network drivers (see node #3 in figure 3).

In the next section, we focus on the integration of wireless sensor networks, gen-
erally adopted for sensing the environment, and we introduce the Sensors Abstrac-
tion and Integration Layer (SAIL) developed within PERSONA, by highlighting
different aspects and requirements of sensor network applications. A specific sec-
tion related to the integration of ZigBee devices concludes the chapter.

5.1 Wireless Sensor Networks

Wireless Sensor Networks [4] (WSN) are an important technological support for
smart environments and ambient assisted applications. Up to now, most applications
are based on ad hoc solutions for WSNs, and efforts to provide uniform and reusable
applications are still in their youth. As general requirements for the use of WSN, we
can consider the following list:

- R1: Integration of various sensor network technologies. AAL-spaces like home
environments may be populated by different network technologies typically
used in different application domains like Home Automation, Digital Entertain-
ment or Personal Healthcare Systems. As a concrete example we can consider
ZigBee or IEEE 802.15.4 standard, and Bluetooth.

14 initially OSGi was designed as a framework to develop Open Service Gateways

The PERSONA Service Platform for AAL Spaces 1193

- R2: Sharing of communication medium by concurrent sensor applications. Sen-
sor applications involving the same network protocol may imply conflicts at the
communication level and waste of resources like energy, bandwidth, and so on.

- R3: Management of different applications on the same WSN. The WSN may
support different applications at the same time, for example localization of a
number of users, posture detection of users, monitoring of energy consumption
of appliances, etc.

- R4: Management of multiple instances of the same application. Further compli-
cations occur when the sensor application is associated with users so that there
are as many many instances of the same application as the number of users; in
this case, the different instances must be discovered and safely integrated into
the system.

- RS5: Dynamic discovery of sensor applications. Because of the innate dynamism
of users’ activities, such applications may join and leave the AAL-spaces at any
time, according to the user behavior.

- R6: Management of logical sensors. The physical sensors deployed either in
the environment or worn by the users could be represented (virtualized) by a
dissimilar number of logical sensors. For example, let’s consider an application
that detects the user’s posture by means of a number of accelerometers placed on
the body: in this case, the posture can be represented by a single logical sensor,
which aggregates information produced by all the accelerometers for producing
the state of the user (sitting, walking, etc.). In this example, the accelerometers
may not even be visible to the application layer.

- R7: Configuration and calibration of sensor applications. Many sensor appli-
cations need to be configured during the deployment phase, for example to bind
the user’s metadata to the sensor used to locate him/her.

The requirement R1 is usually satisfied by enabling the dynamic deployment of
ad hoc network drivers in the system, while we can assume that requirements from
R2 to R5 largely depend on the operating systems and middleware used for program-
ming the sensor nodes (e.g. ZigBee [26], TinyOS [24], TinyDB [16], TeenyLIME
[6] and others [18]). Unlike the requirements R1 to RS, addressing the require-
ment R6 is still an open issue, because, on one side, the sensor nodes should locally
pre-process and transmit aggregated data as far as possible in order to reduce the
power consumption'>. On the other side, arranging such processing on the network
is not always possible, due to the limited computational power. In [5] a declara-
tive language called WADL (Wireless Application Description Language) is used to
describe sensor-based applications which combine the sensed data on the Host PC
side. WADL is based on a producer-consumer pattern constructed according to the
OSGi WireAdmin specification: both the producers (sensors) and the consumers are
modeled as OSGi services and connected at runtime by “wire” objects. WADL is an
XML-based language, which defines a dynamic set of wires that connects different

15 In this respect, it is worth to mention the SPINE (Signal Processing in Node Environment [10])
open source framework that provides simple feature extractors directly on the sensor nodes with
TinyOS.

1194 M.R. Tazari, F. Furfari, J.P. Lazaro, E. Ferro

producers and consumers. This approach is strongly characterized by the assump-
tion that the sensors behave according to a producer-consumer pattern. Although
this assumption leads to a simple and elegant solution, it may become too limiting
when used to abstract WSNs with more complex behaviors.

In a first attempt to provide a uniform model for sensor applications, we designed
the SAIL architecture [9] based on three layers, namely the Access, Abstraction, and
Integration layers, constructed over the OSGi framework. Network drivers reside on
the access layer for handling communication protocols specific to each WSN type.
The abstraction layer of SAIL defines a shared sensor model over all WSN types in-
tegrated through the access layer. The realization of the abstraction layer was based
on the Service Provider Interfaces (SPI) pattern [21] used in different application
domains, like database oriented applications (e.g. ODBC, JDBC drivers). Each net-
work driver is hereby considered as a service provider hidden by a manager that
abstracts the different network models by providing a common API for the upper
layer (the integration layer). The sensor model provided in [9] also took into account
data-centric paradigms adopted in many sensor network applications (e.g. query ori-
ented TinyDB [16]).

However Smart Environments are generally indoor and limited; thus also the size
of the WSN hardly scales up to hundreds of sensors, and the network often has a
small diameter, in some cases it may even be a star. On the contrary, data centric
approaches have been designed while keeping in mind very general monitoring ap-
plications where the number of sensors can (almost) arbitrarily scale and the sensors
are homogeneous in terms of features and monitoring capabilities. For this reason
and because of the many hardware developers in PERSONA consortium converging
to the ZigBee industry standard, we decided to design an optimized version of SAIL
tailored to ZigBee.

5.2 ZigBee Networks Integration

Maintaining the same three-layered architecture introduced in [9], we developed
a ZigBee Base Driver for the SAIL access layer that uses native libraries imple-
menting the ZigBee Application Layer. In fact, while Bluetooth drivers are usually
integrated with different operating systems and platforms, the standardization pro-
cess of the network interfaces for ZigBee is still in progress. Therefore, we chose to
adopt USB ZigBee Dongles available on the market which come either with a sim-
ple AT command-like interface or a more elaborated API based on a native driver.
The basic operations carried out by the base driver include the following set of
functions: a) discovery functions that notify the connection and disconnection of
sensors to/from the WSN, b) description functions that retrieve the properties asso-
ciated with the sensor nodes and the relevant service interfaces, ¢) control functions
for setting the state of the actuators embedded in the sensor nodes, d) access func-
tions that provide read access to the sensors transducers, and e) eventing functions
that enable the subscription to data updates and that notify changes. The implemen-

The PERSONA Service Platform for AAL Spaces 1195

tation of these functionalities by using the ZigBee Application Layer is straight-
forward; the ZigBee standard allows both device and service discovery, as well as
description request and reporting commands (eventing). However, the implemen-
tation of these functionalities is not always mandatory, which often makes the full
integration of the network somewhat complex. For example, in the discovery phase,
the implementation of a broadcast announcement of the devices that join or leave
the network is optional.

For describing devices, ZigBee does not employ the descriptive approach of pro-
tocols like UPnP; rather, a device responds to a description request by replying with
a reference (ClusterID) to the implemented interfaces. It implies that the consumer
of a service must know to which message structure (cluster format) the clusterID
refers. The possibility to answer with additional description in CompactXML does
exist (e.g. <deviceUrl>), but even this feature is optional.

However, the ZigBee Alliance, the standardization body defining ZigBee, pub-
lishes application profiles that allow multiple OEM'® vendors to create interoper-
able products. The current list of application profiles already published or still in
progress, consists of Home Automation, ZigBee Smart Energy, Telecommunication
Applications, and Personal Home and Hospital Care. In general, these profiles use
a combination of clusters defined in the ZigBee Cluster Library. Vendors can de-
fine their custom library for devices not defined by the ZigBee Alliance. According
to this, the PERSONA project is now working on the definition of a PERSONA
Cluster Library and Profile, in order to integrate the personal healthcare system and
special devices like the smart glove or the smart carpet that will be developed by the
consortium partners.

A diagram of the current SAIL architecture is depicted in Figure 10. The Zig-
Bee Base Driver is a network driver in charge of scanning the network, getting the
description of the various nodes, and registering a proxy service for accessing the
discovered remote services. This proxy is a generic ZigBee service, registered with
the OSGi Platform, which exposes the properties retrieved during the network in-
quiry. It allows to access the remote service by means of simple primitives that have
to be filled by appropriate clusters. Thus, in contrast with the more generic model
used by the previous version of SAIL, we have defined a specialized model tailored
on an extension of ZigBee profiles, namely the PERSONA profiles. The compo-
nents on the upper layers may act as Refinement Drivers (in OSGi terms). By using
the OSGi Framework facilities, as soon as a service implementing a known cluster
is registered, these drivers refine the service by registering another service proxy
with a more detailed interface (e.g. action/command based). Thus the second layer
is specialized to represent the service according to a specific profile, for instance
the Home Automation profile. The upper layer is the final step for integrating the
ZigBee services within PERSONA. It is composed of Sensor Technology Exporters
(STE), which discover the services by implementing standard or extended profiles

16 From Wikipedia: An original equipment manufacturer, or OEM is typically a company that uses
a component made by a second company in its own product, or sells the product of the second
company under its own brand.

1196 M.R. Tazari, F. Furfari, J.P. Lazaro, E. Ferro

and register proxies that are PERSONA-aware components !”. The mapping be-
tween services compliant to the ZigBee model and PERSONA OSGi services is
realized at this level; these proxies send events or register service callees according
to the PERSONA ontologies.

In conclusion, the abstract layer is populated by custom drivers which may com-
bine and process the sensed data to instantiate logical sensor services (see R6; e.g. a
sensor providing the user’s position by elaborating RSSI measurements - Received
Signal Strength Indication - coming from different stationary sensors), as well as re-
fine the cluster-based services. Of course, such an elaboration could be realized also
at PERSONA application level, but, from a practical point of view, the realization
at lower layers is expected to be more efficient. In fact, we even plan to implement
the user interfaces addressing the last requirement introduced in the previous sec-
tion (R7) at this layer, in order to provide a uniform way for configuring sensor
applications.

PERSONA Middleware B S o
Service bus e et s |

EmEm =
$ Contextbus s mmm m e
r = <Cqntext Events> <Service Invoke>

i | <Registers> i B
Integration upnp-sTE 3l | . . | PERSONASTE, G } 4 PESﬁ":’sn‘x:’e ‘
Layer l J

\<uses>

L

Refinement Drivers

e '
= Abstraction Zigeee A Y | RS | | Ziggeesenvice
ﬁ Layer _| Refinement Driver Profile Based
- l <uses>
§| A _ !
E | Ccess Bluetooth Zighee Sj <Registers> ZigBee Service
P Laver Base Driver, Sprut Base Driver, Cluster Based
5 = .
- 0SGi Platform
S uss Registry

Zighee
Dongle

Fig. 10 The SAIL layered architecture

17 The same approach can be used to expose the services according other access technologies (e.g.
UPnP)

The PERSONA Service Platform for AAL Spaces 1197

6 Conclusions

The AAL service platform developed within the PERSONA project and introduced
in this chapter is expected to facilitate the gradual evolvement of AAL spaces based
on a very compact core. To reach this goal, AAL spaces are modeled in PERSONA
as Open Distributed Systems (see [8] for our undersanding of ODS). The resulted
platform allows for self-organization of both physical nodes and logical compo-
nents by providing a middleware that supports seamless connectivity and semantic
interoperability. For providing aggregated added value, the solution relies on admin-
istrative re-configurability of platform components, such as the Situation Reasoner,
the Dialog Manager, and the Service Orchestrator. On the basis of the achieved
re-configurability, future research can work in parallel on both simplifying the con-
figuration task towards end user programming and developing intelligent algorithms
towards automatic re-configuration.

The next steps in the project plan foresee a thorough evaluation of the techno-
logical results during and after the deployment of the system to the PERSONA
three pilot sites in Denmark, Italy, and Spain. We have already started to define the
evaluation criteria, methodology, procedures, and tools. The rising awareness of the
importance and difficulties of evaluating Aml systems in the research community
(see, for example, the summary provided in [20]) shows that the evaluation phase
will be one of the most challenging tasks of the project in the near future.

Further research planned by the authors of this chapter relates to breaking out of
the boundaries of the home environment towards societal systems, as suggested in
[19]. The more suspenseful topics with relation to the PERSONA approach are the
ad-hoc formation of temporary spaces and related security concerns, rapid configu-
ration changes in public spaces, and interoperability among different spaces.

References

[1] AAL: The Ambient Assisted Living Joint Programme — www . aal-europe.
eu (2007)

[2] ARTEMIS SRA Working Group: The ARTEMIS Strategic Research Agenda.
Research Priorities, IST Advanced Research and Technology for Embedded
Intelligence in Systems, www.artemis-office.org/DotNetNuke/
SRA/tabid/60/Default.aspx (2006)

[3] Avatangelou, E., Dommarco, R.F., Klein, M., Miiller, S., Nielsen, C.F., Sori-
ano, M.P.S., Schmidt, A., Tazari, M.R., Wichert, R.: Conjoint PERSONA —
SOPRANO Workshop. In: Constructing Ambient Intelligence — AmI 2007
Workshops, pp. 448-464. Springer CCIS Series, Darmstadt, Germany (2007)

[4] Baronti, P., Pillai, P., Chook, V.W.C., Chessa, S., Gotta, A., Hu, Y.F.: Wireless
sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee
standards. Computer Communications 30(7), 1655-1695 (2007)

1198 M.R. Tazari, F. Furfari, J.P. Lazaro, E. Ferro

[5] Cervantes, H., Donsez, D., Touseau, L.: An Architecture Description Lan-
guage for Dynamic Sensor-Based Applications. In: Proceedings of Consumer
Communications and Networking Conference (CCNC 2008), pp. 147-151.
IEEE, Las Vegas (Nevada USA) (2008)

[6] Costa, P., Mottola, L., Murphy, A.L., Picco, G.P.: Programming Wireless
Sensor Networks with the TeenyLIME Middleware. In: Proceedings of the
8th ACM/IFIP/USENIX International Middleware Conference (Middleware
2007). Newport Beach, (CA, USA) (2007)

[7] Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.C.: Sce-
narios for Ambient Intelligence in 2010. ISTAG Report, European Com-
mission — IST Advisory Group, ftp.cordis.europa.eu/pub/ist/
docs/istagscenarios2010.pdf (2001)

[8] Fides-Valero, A., Freddi, M., Furfari, F., Tazari, M.R.: The PERSONA Frame-
work for Supporting Context-Awareness in Open Distributed Systems. In: To
appear in the proceedings of the European conference on Ambient Intelligence
— AmI-08. Nuremberg, Germany (2008)

[9] Girolami, M., Lenzi, S., Furfari, F., Chessa, S.: SAIL: a Sensor Abstraction
and Integration Layer for Context Aware Architectures. In: Proceedings of
the 34th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA 2008), pp. 374-381. IEEE, Parma, Italy (2008)

[10] Gravina, R., Guerrieri, A., et Al., S.I.: SPINE (Signal Processing in Node En-
vironment) framework for healthcare monitoring applications in Body Sensor
Networks. White paper, TILAB, spine.tilab.com/papers/2008/
DemoSPINE. pdf (2008)

[11] Heider, T., Kirste, T.: Architecture considerations for interoperable multi-
modal assistant systems. In: Proceedings of the 9th International Workshop on
Design, Specification, and Verification of Interactive Systems, pp. 403—417.
Rostock, Germany (2002)

[12] Hellenschmidt, M., Kirste, T.: SODAPOP: A Software Infrastructure Support-
ing Self-Organization in Intelligent Environments. In: Proceedings of INDIN
’04: the 2nd IEEE International Conference on Industrial Informatics, pp. 479—
486. IEEE, Berlin, Germany (2004)

[13] Ambient Intelligence: from vision to reality. ISTAG Report, Euro-
pean Commission — IST Advisory Group, cordis.europa.eu/ist/
istag-reports.htm (2003)

[14] Janse, M., Vink, P., Georgantas, N.: Amigo Architecture: Service Oriented Ar-
chitecture for Intelligent Future In-Home Networks. In: Constructing Ambi-
ent Intelligence — AmI 2007 Workshops, pp. 371-378. Springer CCIS Series,
Darmstadt, Germany (2007)

[15] Krakowiak, S.: Middleware Architecture with Patterns and Frameworks.
INRIA Rhone-Alpes, France, sardes.inrialpes.fr/~krakowia/
MW-Book/ (2007)

[16] Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acqui-
sitional query processing system for sensor networks. ACM Trans. Database
Syst. 30(1), 122—173 (2005). DOI http://dx.doi.org/10.1145/1061318.1061322

The PERSONA Service Platform for AAL Spaces 1199

[17] Mayrhofer, R.: Context Prediction based on Context Histories: Expected Ben-
efits, Issues and Current State-of-the-Art. In: Proceedings of ECHISE ’05:
1*" International Workshop on Exploiting Context Histories in Smart Environ-
ments. Munich, Germany (2005)

[18] Molla M.M.; Ahamed, S.: A survey of middleware for sensor network and
challenges. In: Proceedings of nternational Conference on Parallel Processing
Workshop (ICPP 2006) (2006)

[19] Nakashima, H.: Cyber Assist Project for Ambient Intelligence. In: J.C. Au-
gusto, D. Shapiro (eds.) Advances in Ambient Intelligence, pp. 1-20. IOS
Press (2007)

[20] Neely, S., Stevenson, G., Kray, C., Mulder, 1., Connelly, K., Siek, K.A.: Eval-
uating pervasive and ubiquitous systems. In: J. Hong (ed) The “Conferences”
column of PERVASIVE computing 7(3), 85-89. IEEE CS (2008)

[21] Seacord, R.C.: Replaceable Components and the Service Provider Interface.
In: ICCBSS ’02: Proceedings of the First International Conference on COTS-
Based Software Systems, pp. 222-233. Springer-Verlag, London, UK (2002)

[22] Tazari, M.R., Grimm, M.: D11 — Report on Context-Awareness and Knowl-
edge Representation. Public deliverable, MUMMY (IST-2001-37365),
www.mummy-project.org/downloads.html (2004)

[23] Thomson, G., Sacchetti, D., Bromberg, Y.D., Parra, J., Georgantas, N., Is-
sarny, V.: Amigo Interoperability Framework: Dynamically Integrating Het-
erogeneous Devices and Services. In: Constructing Ambient Intelligence —
Aml 2007 Workshops, pp. 421-425. Springer CCIS Series, Darmstadt, Ger-
many (2007)

[24] TinyOS Project: www . tinyos .net (2008)

[25] Turunen, M.: Jaspis — A Spoken Dialogue Architecture and its Applications.
Ph.D. thesis, University of Tampere, Department of Computer Sciences, Finn-
land (2004)

[26] ZigBee Alliance: ZigBee specifications — www . zigbee . org (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

