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1 Introduction 

The pervasion of computing into the spaces where we live, 
work, and travel is challenging conventional wisdom about 
software development. Application domains of ubiquitous 
computing, also known as ubicomp, include energy 
management in buildings, transportation, assisted living, 
home automation and surveillance, etc. In addition to 
mobile devices, ubicomp encompasses the use of devices 
embedded or scattered in spaces ranging from homes to 
subway stations to streets and farms. 

Traditional software development has relied on design 
methodologies that expect stakeholders to agree on a set of 
requirements for a system before it is implemented by 
software engineers. In contrast, ubicomp often targets open 
systems in informal domains where users come and go 
freely, each user may have a different set of expectations, 
and no central authority dictates the desired system 
behaviours. 

Context-aware systems, with their adaptability to the 
surrounding circumstances, are an important step forward. 
However, also their adaptive context-aware behaviours need 
to be agreed on by stakeholders beforehand, and the 
difficulty to change those decisions after being cast into 
software causes end users to feel at the mercy, rather than in 
control of technology (Barkhuus and Dey, 2003). 

In these domains, system requirements are too 
personalised, too specific to circumstances, and may change 
too often to make the approach of hiring engineers to make 
every change economically viable or even fast enough to be 
useful. 

A promising approach is to empower end users to design 
and deploy their own personalised systems. Today, 
however, mainstream methods and tools for software 
development are inaccessible to end users. Developing the 
kinds of systems described above entails programming for 
network communications, concurrent threads, timeouts, 
exceptions, and adaptive behaviours, all of which are 
notoriously hard to use effectively, even by professional 
engineers. Furthermore, current software design methods 
are mute about physical location, making it impossible to 
relate desired behaviours and spatial context at the design 
level. Today, that relation is hardwired into the code, and 
into the way systems are deployed and administered. 

This paper presents TeC, a framework for end-user 
design, deployment, and evolution of applications for 
ubicomp. TeC is meant for a range of end users, from home 
owners to domain experts, such as facility administrators 
and health-care professionals. 

To become accessible to end users, TeC departs from an 
algorithmic view of computing in favour of a declarative 

view similar to spreadsheets. In the latter, there is no 
algorithm or ‘main’ programme: all formulas are 
asynchronously recalculated whenever the values they refer 
to are updated. Similarly, computation and communications 
in TeC are triggered asynchronously and overall system 
behaviour is emergent. 

TeC is precise enough to enable the fully automated 
deployment of systems. For that, it builds on prior  
work that addressed the formal operational semantics and 
the automated verification of desired behaviours (Sousa, 
2010). It also includes constructs that address important 
characteristics of ubicomp, namely: 

a the situatedness of features in physical locations 
meaningful to end users, such as rooms and buildings 

b awareness of user presence and identity 

c dynamic adaptation of application features in response 
to application-level events. 

Broadly, this work builds on principles of service 
orientation (SOA) and its supporting mechanisms, such as 
automated service discovery (Zhu et al., 2005). 

The contributions in this paper include descriptions of 

a the TeC language, by example 

b editors for personal computer and smart phone 
platforms 

c middleware that facilitates system deployment and 
evolution 

d an empirical study that helped tune and obtain 
preliminary results on the framework’s usability. 

In the remainder of this paper, Section 2 introduces TeC, 
while Sections 3 and 4 describe constructs to address space 
and personalisation of behaviours, respectively. Section 5 
discusses implementation, including the integration of 
legacy players, space-aware discovery, dynamic deployment 
of teams, and security and privacy issues. Section 6 
describes the evaluation and Section 7 compares TeC with 
related work. Section 8 describes future work and Section 9 
summarises the main points of the paper. 

2 TeC 

A TeC system, called a team, consists of a collection  
of players with no central component responsible for 
coordinating each step of the action. Players are  
computing-enabled devices ranging from computers and 
smart phones, to smoke and motion detectors, to microwave 
ovens, clothes driers and smart power metres. A team’s 
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overall function results from the joint effect of the activities 
carried out by the individual players. 

Activities generalise the concepts of process, 
computational service, and function of a device. 
Specifically, activities may be of short duration with a 
discrete output, like service invocation; they may be  
long-lasting with a succession of inputs and outputs, like 
processes; or they may last for months without producing an 
output, like the function of a smoke detector. 

End users may design different teams to serve purposes 
such as ‘surveillance’, or ‘energy management’. A team 
design includes activity sheets, describing the role of each 
player in the team, and communication paths for channelling 
asynchronous messages and data streaming between players 
(more below). 

Deploying a team consists of two operations: discovery 
and briefing. Concrete players for carrying out the activities 
in a team are discovered at run time by the TeC middleware, 
which then briefs the players about their role in the team. 
Once briefed, players interact with their environment and 
with each other with no further intermediation or central 
coordination. 

Figure 1 illustrates a team design for surveilling the 
perimeter at a small farm belonging to a hypothetical  
end user, Anne. The team overview, on the top left, shows 
three activities: monitor fence, film and phone. The 
communication paths link output events to input events, 
respectively shown as  and , and output to input data 
streams, shown as  and . The figure also shows select 
details for each of the activity sheets. 

Team designs are specified by end users by interacting 
with an editor (more in Section 5). If at any point Anne is 
not happy with the way the team in Figure 1 is operating, 
she might add more activities, rewire the routing of 
messages and data among players, or change the entries in 

the activity sheets, which support a level of syntactical 
complexity similar to the formulas in a spreadsheet. 

2.1 Activities 

To add an activity to a team, end users customise an activity 
sheet starting from an activity type. Typically, activity types 
would result from a community standardisation effort and 
would be downloadable or shipped with TeC-enabled 
devices. 

Activity types define input events, data streams, and 
internal outcomes: property values that may change during 
operation. For example, whether a motion sensor has been 
tripped, a Boolean outcome, or the temperature sensed by a 
thermometer, a numeric outcome. 

When Anne added the film activity in the design shown 
in Figure 1, descriptions for the input events on and off and 
for output stream vid out are automatically copied from the 
activity type. These correspond to features that are intrinsic 
to a filming device, and are shown in the activity sheet but 
cannot be changed by Anne. 

The tab outcomes (not shown for the sake of space) in 
the sheet for monitor fence includes descriptions for 
Boolean outcomes lean and break. As above, these 
descriptions are copied from the type and cannot be changed 
by Anne. 

Users customise activity sheets by defining output 
events, the conditions that trigger such events, and  
message payload. In the out evt tab for monitor fence, 
Anne defined event alert and its triggering condition  
lean | break. Payload attributes are shown in rows with a 
name on the left and a value on the right. In the example, 
Anne added and two payload attributes dial and msg that 
will travel with the message issued when the event occurs 
(more on communication below). 

Figure 1 Design of a team for surveilling the perimeter at Anne’s small farm (see online version for colours) 

 
Notes: The fence is equipped with sensors that detect animals leaning against the wire, or breaking it. If that happens, a call is 

issued to Anne’s cell phone, streaming video captured from the fence so that the situation can be assessed. Anne may press 
key 5 on her phone, indicating that no further action is required from the system. 
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Anne also bought a TeC-enabled phone at a local store, 
which came with an activity type describing input events 
such as call, input data streams such as vid in, and outcomes 
such as recognising key presses by analysing tones on the 
line. Anne customised the sheet with output event ok, to be 
triggered when outcome keyPress takes the value 5. 

Sheet customisation may include defining new input 
events in addition to those that come with the activity type. 
The observation of such events and the values of their 
payloads may then be used anywhere in the out evt tab. 

Defining new input events is especially useful when 
users wish to include a generic activity in a team. Unlike 
specialised activity types, the generic type includes no 
definitions of input events, streams, or outcomes, and may 
be played by any computing-enabled device. 

The team in Figure 2 includes a generic activity make 
calls which facilitates making calls to different destinations 
depending on circumstances and in response to alerts issued 
by any sensor s. Anne defined two input events for make 
calls, fence and handled, and made an explanatory note 
for handled but not for fence. In the example, output event 
call Anne is triggered as soon as fence is observed. 

2.2 Triggering output events 

Event call 911 in Figure 2 illustrates a less trivial triggering 
condition, meant to wait a short while for user reassurance, 
and lacking that, issue a call to the emergency number. 

Triggering conditions may include the operators: 

• P(e, t), that postpones the validity of e by time t 

• T(e1, e2), that toggles between true and false as e1 and 
e2 become true, respectively 

• e R(t), that becomes valid with e and then rests for time 
t, ignoring e until that time is elapsed. 

In Figure 2, P(fence, 0:01) sets a one minute time out after 
a message is received from the fence, and T(fence, 
handled) disables the reaction to the fence alert by 
becoming false once handled is observed. 

The R operator can be used in monitor fence to reduce 
repeated alerts, for example, due to a horse repeatedly 
leaning against the fence for scratching its hindquarters. 
Specifically, by making lean | break R(0:02) the trigger 
condition for alert, a sensor will refrain from issuing further 
alerts for two minutes after being activated the first time. 

In general, triggers are Boolean expressions that may 
include logical operators and, & or |, not, !, as well as 
predicates on values using comparison operators such as 
equals, greater than, etc. For example, if tempF is an 
outcome of a temperature sensor measured in degrees 
Fahrenheit, then tempF > 50 & tempF < 80 is a valid 
expression. The name of an input event is an expression that 
becomes true each time the event is observed. 

Because output events occur at discrete points in time 
while conditions may remain true for a long time, an event 
occurs when its trigger becomes true. The trigger needs to 
become false before the event can occur again. 

2.3 Communication 

The occurrence of an output event causes a message to be 
sent along the communication path(s) attached to it, and in 
turn that will cause the occurrence of the input event(s) at 
the end of the path(s). In Figure 1, the occurrence of event 
ok on phone causes (sending a message whose reception 
causes) event off on filming. Event alert causes both call on 
phone and on on film. 

Figure 2 End user Anne redesigned the team in Figure 1 to support a large fence with multiple sensors and multiple cameras (see online 
version for colours) 

  
Notes: When a sensor is activated, a camera within 20 metres of that sensor is turned on. Also, a call to 911 will be issued if Anne 

cannot be reached or does not handle the alert. 
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To keep matters simple for end users, paths may connect 
events freely and the matching of attributes in the payload is 
best effort, based on attribute name. In Figure 1, attributes 
dial and msg on the outgoing message are matched to 
attributes dial and msg on input event call. Since on has no 
attributes, the payload of the message is discarded in film 
upon triggering the input event. 

While best effort matching saves users from the tedious 
work required by method invocation in mainstream 
languages, it may lead to unintended errors. To help users 
manage this tradeoff, upon user request, the editor 
highlights which attributes are being matched in a 
connection. Additionally, players should have reasonable 
defaults to all attributes of input events. 

3 Space 

Teams may be widely distributed, with some players 
deployed in one space, such as Anne’s farm, and others 
somewhere else, such as her friend Bob’s house, or from 
Anne’s point of view “where I am now”. 

To make it easy for end users to design and deploy 
distributed teams, TeC combines automated discovery of 
players with explicit spatial constraints in team design. Such 
constraints are used to guide the discovery mechanisms, i.e., 
to scope discovery to the spaces of interest for the user. For 
that, all players are made aware of their location (more in 
Section 5) and the TeC language defines the property loc for 
all entities. 

Spatial constraints are indicated in the form name @ 
space, to be read name at space, and may show in one of 
two ways. First, constraints matching human-perceived 
boundaries, such as a room, building, or piece of property. 
These are shown in the team design by a shaded rectangle 
enclosing the activities that take place at the named space. 
All activities in Figure 2 take place within the farm. 

Second, a range around a location of interest. These are 
indicated by a shaded area with round corners labelled 
name @ radius * location, to be read, name at radius 
around location. In the figure, film takes place within a  
20 metre range of the activated sensor, s. 

Location in team design is specified either by  
reference to the location of a known entity, e.g., s.loc or 
Anne.loc, or by indicating a human-readable address  
of the form city/street-address/room. For example, Alice-
Springs.NT-0870.au/456.windy-road/kitchen.2 indicates 
the kitchen in Apartment 2 at 456 Windy Rd in Alice 
Springs. Users may define aliases for a location, such as 
farm (specific address not shown here), or a list of locations, 
such as trusted spaces, listing the addresses where a user is 
comfortable deploying his or her teams. The discovery 
mechanisms described in Section 5 are capable of  
reasoning about containment and proximity of such location 
expressions. 

In Figure 2, the activity monitor fence is carried out by 
all the players (fence sensors) found within the boundaries 
of the farm. In TeC, finding one player to carry out an 
activity is indicated by a single box, and finding all such 

players is indicated by stacked boxes. In the latter case, a 
label precedes the activity name and output events 
emanating from the stacked boxes, e.g., s in s:monitor 
fence and s.alert. This label refers to the specific player 
emitting the event and can be used elsewhere in the design. 
In the example, s is used to constrain the discovery of a 
camera to a vicinity of s.loc. 

The set of players carrying out an activity described by a 
stacked box may change dynamically as players enter or 
leave the prescribed space. For example, if Anne  
buys extra sensors of type monitor fence and deploys  
them at the farm, they will be automatically discovered and 
instantaneously incorporated into the surveillance team, 
since that is the intent expressed in the team design. 

The example in Figure 2 illustrates 
a the placement of teams within spaces, with players 

being discovered both within a fixed location and at a 
vicinity that follows the occurrence of events at run 
time 

b incorporating all players within a space that can 
perform that activity 

c the specification of timeouts. 

4 Personalised behaviours 

An important feature of teams is the ability to adopt 
different configurations and behaviours depending on which 
users are present. For example, suppose that a hypothetical 
user, Bob, installed a smart power metre at his home that 
issues pricing signals reflecting the load on the power grid 
(http://www.smartmeters.com/). To reduce the energy bill, 
Bob would like the clothes dryer, a heavy energy consumer, 
to pause drying during peak rates and to automatically 
resume during lower rates. 

Figure 3 shows Bob’s initial design to save energy at 
Bob’s house (Bob’s alias for his home address). The team 
includes two unnamed sub teams: one at the laundry room, 
and the other at the electric cabinet. Operator in the space 
constraint for the sub teams refers to the space of the 
enclosing team: Bob’s house. 

However, Bob’s wife Mary is not happy with the new 
feature, since she would like to have her drying cycles run 
uninterrupted. To accommodate that, Bob changed his 
design to Figure 4. Now, the sub team in the laundry room 
includes activity track(Bob). 

Figure 3 When the smart metre detects rate changes, it informs 
the clothes dryer, which pauses drying at peak rates 
(see online version for colours) 
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Figure 4 If Bob is present in the laundry room when the dryer is 
started, the smart metre joins the team and sends 
pricing signals to the dryer (see online version  
for colours) 

 

Activities of type track take as a parameter the id of the 
entity to track and may use a variety of means to do so 
(Hightower and Borriello, 2001; Covington et al., 2002; 
Asmidar and Jais, 2009). In the sheet for track(Bob), not 
shown for the sake of space, the trigger for event save is set 
to T(enter, leave) & drying, which captures the intention to 
issue event save if the dryer is started while Bob is in the 
laundry room. Outcomes enter and leave are defined in the 
track type, and correspond to the tracked entity entering and 
leaving the space where the track activity is deployed. 
Operator T works as described in Section 2. 

Events save and done are used to control, respectively, 
starting  and stopping  the sub team at the electric 
cabinet. A sub team without such operators is deployed and 
retired with the enclosing team, and ultimately at the users 
request. A sub team with these operators is deployed once 
an event reaches , and retired either with the enclosing 
team, or when an event reaches . In the example, the 
electric sub team is deployed once save is announced: the 
metre is then briefed for activity smart metre and starts 
sending peak and low events to the dryer. Whenever this 
sub team is stopped, the smart metre device keeps metering 
and possibly participating in other teams: it is just not part 
of save energy. 

This example illustrates features to detect the presence 
and identify specific users in a space, and the inclusion of 
rules in a team design to automatically start and stop sub 
teams. These two constructs were used to design a team that 
personalises its behaviour at run time, depending on who is 
present in a space. 

Figure 5 Informal picture of the TeC infrastructure (see online 
version for colours) 

 

5 Implementation 

In addition to the players, which take centre stage, support 
for TeC relies on three kinds of components: editors of team 
designs, team managers (TM) present at each space, and 
space resolvers (SR) deployed throughout the internet: see 
Figure 5. Having infrastructural components such as TMs 
and SRs, as opposed to adopting a purely peer-to-peer 
approach, makes it easier for end users to control the 
participation of players in privately owned spaces. 

• Editors enable end users to edit team designs, and 
include commands to deploy and retire a team. 

• TM oversee the set of players within a geographical 
area and may coordinate the deployment of distributed 
teams with other TMs. Their role is divided into: 
1 player tracker registers players and monitors their 

physical location and performance 
2 deployer facilitates deploying, updating, and 

retiring teams, briefing players as needed 
3 user tracker identifies users entering and leaving 

the space, keeping track of their location within the 
space 

4 gatekeeper facilitates communicating with other 
TMs while controlling access to the space as well 
as the release of any information to the outside. 

• SR map space constraints, such as specified in teams 
designs, to the TMs that will help discover the desired 
players. For this role, SRs take into account security 
and privacy policies transmitted by gatekeepers. 

The communication between distributed components, 
including the communication of events between the players 
in a team, is carried in XML over the network transport 
(currently TCP/IP). 

5.1 Players and activities 

For becoming TeC-enabled, players need the computational 
capability to interpret activity sheets, following the 
operational semantics in Sousa (2010), and the ability to 
communicate over the network. 

Two kinds of players can be distinguished: players that 
require specialised devices, such as motion detectors, and 
those which can be realised by generic computing devices, 
such as make calls in Figure 2. For players that require 
specialised hardware, we are investigating the use of  
low-power system-on-chip, (e.g., http://www.gainspan.com/ 
products/GS1011_single_chip.php), although we have done 
functionally equivalent prototypes using inexpensive 
sensors with device drivers running on a computer 
(http://www.phidgets.com/). 

Turning such devices into TeC players consists of 
wrapping their device drivers with code that implements the 
TeC protocols (more below). These wrappers have the 
ability to run multiple activity sheets simultaneously; for 
example, a smart metre may participate in several teams, 
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each with its own conditions to trigger different output 
events (e.g., Figure 4). 

Players deployed at fixed locations, such as smoke 
detectors and smart metres, have their location set with the 
TM during deployment. Players that run in mobile devices 
such as cell phones leverage the device’s own location 
awareness mechanisms, such as GPS, and send updates to 
the TM every time their location changes past a radius set 
during deployment. 

5.2 Editors 

An initial implementation of an editor works over the 
Eclipse platform (http://www.eclipse.org/modeling/gmp/) 
and can be used to produce team designs with the core 
features shown in this paper. An additional implementation 
was developed over AndroidTM (http://www.android.com/), 
which is shown in Figures 6 and 7. 

Several instances of editors may run on different 
computers/phones within a space: each editor is registered 
with the local TM following a protocol similar to registering 
players (Section 5.4). Team designs reside with the editors, 
and are shared with TMs for deployment purposes. Editing 
team designs is supported while a team is deployed, and the 
team is re-briefed with the changes upon explicit user 
indication. 

To help users design their teams, editors proactively 
query TMs for the players available within a space and the 
activity types they support: exploratory discovery. 

5.3 Space-aware discovery 

Discovery requests have type constraints, either a specific 
activity type or any, and spatial constraints. For example, 
Anne may want to know about all monitor fence sensors 

deployed within her farm, and Bob may want to know about 
all players of any type deployed at his house. In addition to 
exploratory queries for editing purposes, the TM confirms 
player availability during team deployment. 

Specifically, the deployer (in the TM) examines the 
spatial constraints for the team and directs discovery 
requests to either the local player tracker or to the 
gatekeeper. A team employs local players by default, e.g., 
Figure 1, or when a constraint refers to a part of the local 
space, e.g., subteams in Figures 2 through 4. 

Figure 6 Screenshots of the Android editor, (a) part way through 
designing the team in Figure 1, and (b) associating 
message payload to event alert (see online version  
for colours) 

 
(a)    (b) 

Figure 7 Continuing the design in Figure 6, (a) adding the film activity (b) adding a data stream between film and phone and  
(c) connecting the ends of the stream to the data ports (see online version for colours) 

 
(a)     (b)     (c) 
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Discovery may be done after team deployment, when 
spatial constraints contain a variable, e.g., s in @20m * 
s.loc in Figure 2. For simplicity, we do not distinguish the 
case where s refers to one of a set of fixed players, from the 
case where s is mobile. Both cases are handled by having 
the TM broker the delivery of events. In the example, the 
activity sheets for monitor fence instruct the sensors to 
send alert events to the TM. Upon receiving an alert from a 
player s, the TM discovers a player for film that satisfies the 
location constraint, briefs it, and then relays the event. 
Additionally, when asked to discover all players for an 
activity within a space, e.g., monitor fence, the deployer 
registers a callback with the player tracker for being notified 
when a player for that activity enters the space. 

In its simplest form, discovery of one player within a 
space results in an arbitrary player capable of carrying out 
the desired activity. Frequently, there will be only one such 
player, e.g., a smart metre in the electric cabinet. However, 
there are also cases where the user is not best served by an 
arbitrary choice among several candidates. In the example 
above, the choice of a camera @20m * s.loc might be 
refined with the notion that closer to s is better. More 
general optimality criteria might also include desired 
features and quality of service preferences, e.g., resolution 
or colour. Prior work by the first author included 
sophisticated discovery criteria (Sousa et al., 2006, 2009), 
and we are currently investigating how to extend TeC with 
optional optimality criteria, without losing its intended 
simplicity of use. 

When the spatial constraints for an activity extend 
beyond the local space, the deployer directs discovery 
requests to the gatekeeper. The gatekeeper relays the request 
to a SR, which, akin to a name server in internet’s domain 
name system (DNS), identifies and relays the request to the 
one or more TMs that satisfy both the spatial constraints and 
mutual trust policies. 

5.4 Security and trust 

Security and trust are addressed at two levels: 

a within a space 

b across spaces, for purposes of team deployment and 
interaction. 

Protection within a space starts with player deployment 
(Kawsar et al., 2008). Users control the admission of players 
into a space by explicitly swiping an RFID tag associated 
with each player by a reader attached to the TM. The tag 
contains a public key for the player, which is used by the 
player tracker to initiate communication and set up a secure 
channel between the player and the TM. Fresh symmetric 
keys are generated by the deployer for communication 
within each team, which are passed during briefing. 

In addition to players, the identity of the users 
themselves needs to be verified by the space. Doing so 
unobtrusively is a separate and active area of research 
(Sabzevar and Sousa, 2011). For simplicity, the current 
prototype uses RFID technology (Sousa et al., 2005). 

Protection across spaces is coordinated by the 
gatekeeper. For example, suppose that Anne is visiting her 
friend Bob, consults him about the team design, and then 
decides to deploy the team in Figure 2. Because that team 
includes activities at the farm, a discovery request is 
directed by the TM at Bob’s home to the TM at the farm 
(facilitated by SRs, as described in 5.3). 

In this example, the security issues are 

1 the TM at Bob’s home becomes aware that Anne is 
deploying a team at her farm 

2 the TM at the farm becomes aware of Anne’s presence 
at Bob’s 

3 the TMs at both spaces become aware of Anne’s design 

4 the TM at the farm needs to recognise Anne and grant 
the request. 

Issues (1–3) could be alleviated if an editor running on 
Anne’s phone were to communicate directly with the TM at 
the farm, for example, via a cellular telephony link secured 
using previously shared encryption keys. The flip side of 
this security strategy is that users have to become aware of, 
and manage information release to remote TMs vs. the local 
TM. This may become complex when users intend to 
leverage local players, or to deploy teams with a mix of 
local and remote players. 

To make it simpler for end users to manage security, 
editors currently register with the local TM at a space and 
rely on it to facilitate all discovery and deployment requests. 
The flip side of this strategy is that users need to decide 
whether to trust a space before editing/deploying their team 
designs at that space. 

With either security strategy, the fourth issue concerns 
Anne’s identification and access control at the farm. To 
facilitate that, the editor identifies the request as coming 
from Anne and signs it using her (private key) credentials. If 
Anne is known to the farm and authorised to deploy teams, 
which she is, the gatekeeper at the farm relays the request to 
the player tracker and subsequent briefings to the players 
themselves. 

5.5 Briefing 

The deployer briefs each player during team deployment, 
and may do so again, if the user subsequently changes the 
team design and requests the changes to come into effect. 

Figure 8 shows the briefing transmitted to monitor 
fence in Figure 1, which includes the activity sheet and 
communication paths that start or end in monitor fence. In 
this example, the briefing includes the specification of 
output event alert, with expressions for its trigger and 
payload, and the communication paths to events call and 
on. Specifically, each target element identifies the IP 
address, port, and symmetric encryption key to use in that 
channel (elided in the figure). While in transit, this briefing 
is itself encrypted with the symmetric key shared between 
the player for monitor fence and the TM. 
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Figure 8 (a) Briefing for the activity sheet in Figure 1 and  
(b) message sent towards phone when lean | break is 
satisfied 

<activity-sheet activity=“monitor fence”> 
 <out-evt> 
  <evt name=“alert” trigger=“lean | break”> 
   <att name=“dial” value=“&quot555 111 1234&quot”/>
   <att name=“msg” 
    value=“&quotThere’s a possible break in the 

perimeter. &quot”/> 
   <target in-evt=“call” ip=“phone ip” port=“***” 

key=“******”/> 
   <target in-evt=“on” ip=“film ip” port=“***” 

key=“******”/> 
  </evt> 
 </out-evt> 
 <out-stream/> <in-evt/> <in-stream/> 
</activity-sheet> 

(a) 

<evt name=“call”> 
 <att name=“dial” value=“555 111 1234”/> 
 <att name=“msg” value=“There’s a possible break in the 

perimeter.”/> 
</evt> 

(b) 

The briefing protocol described above supports stateless 
activities, such as the ones throughout the examples in this 
paper. Or to be more precise, activities which state can be 
discarded when the team is retired and when the activity 
passes to a different player during deployment (e.g., film in 
Figure 2). Should it become necessary to preserve an 
activity’s state in such circumstances, then this briefing 
protocol could be extended so that the TM facilitates the 
transmission of state snapshots between players (Sousa  
et al., 2005; Sousa, 2005). 

5.6 Dynamic deployment and adaptation 

For team designs that include rules for starting  and 
stopping  sub teams, e.g., Figure 4, the discovery and 
briefing of players may be done after a team is deployed. 
Similarly to the case of space constraints with variables 
discussed in Section 5.3, the TM registers to receive the 
events leading to the start and stop operators, and reacts to 
the reception of those by deploying or retiring the sub team, 
as requested. 

As in prior work (Sousa et al., 2006), the TM could be 
extended to play an active role in fault tolerance and 
adaptation to performance degradation of players. However, 
the design herein reflects the goal of minimising the role of 
infrastructural components after the team is deployed. 
Currently, the TM only intervenes during deployment and 
retirement of a team/subteam. 

6 Evaluation 

The evaluation of this work has so far covered the following 
two aspects: first, the usability of the editor, and second, the 
effort associated with bootstrapping TeC towards building 
real systems for a smart home. As the implementations 
mature, more encompassing evaluations will be carried out 
(Section 8). 

6.1 Usability 

The usability of the Android editor was evaluated in two 
rounds of user studies. 

The first round emphasised formative evaluation: it was 
carried out in the early stages of development, with a 
prototype. The study population consisted of 12 volunteers 
among the graduate students taking a user interface design 
course. These students were totally unfamiliar with TeC, 
and after an explanation of five minutes were asked to carry 
out concrete tasks concerning the creation and modification 
of team designs. Users performed these tasks unassisted. 

Feedback from users was helpful in identifying unclear 
aspects and awkward interactions, which led to some 
redesign and polishing of the interface. The interface in 
Figures 6 and 7 results from these changes. 

The second round took place a few weeks later, with the 
same population but now with the polished interface. This 
round emphasised usability metrics defined for each 
concrete task, including completion rate (percentage of 
successful attempts at completing tasks), average number of 
user errors (users taking an unintended action), and average 
number of clicks, i.e., screen touches, to complete each task. 
The evaluators set success criteria for each metric based on 
their understanding of what would be acceptable by users, 
and according to the complexity of each task. 

The measurements for eight simple tasks are shown in 
Figure 9. The ideal completion rate for tasks is 100%, 
corresponding to users always succeeding in finishing what 
they set out to do. Although the rates for tasks 2, 75%, and 
8, 42%, had been significantly below this goal during the 
formative evaluation, they were brought all the way up to 
100% with the revised interface. 

The ideal number of user errors would be zero, 
corresponding to users always knowing exactly what to do 
to accomplish their intent. However, this ideal is unlikely to 
be attainable by absolute beginner users such as those in 
these studies. Therefore, the evaluators set non-zero criteria 
for less trivial tasks such as 2, 4, and 8. Adding a 
connection, task 8, had the highest number of user errors 
due to users having trouble locating the command. The 
redesigned interface in round 2 reduced the trouble on this 
task by almost half. 
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Figure 9 Results of users studies (see online version for colours) 

 

User difficulty on editing trigger conditions, task 5, came as 
a surprise: users became confused by the popping up of the 
on-screen keyboard as soon as they clicked the editable 
field. Because the appearance of the keyboard reshuffled the 
screen layout, users could only see all the fields again by 
hitting the back button to remove the soft keyboard. This 
problem also raised the number of clicks for task 5. 

Ideally, the average number of clicks to complete a task 
would be below a threshold that reflects the task’s 
complexity. Except for task 5, due to the issue above, all 
others came on or below this threshold. 

In addition to quantitative metrics, users were also 
surveyed with questions honed to identify points for 
improvement and preferred designs among alternatives. The 
answers to these questions already proved useful in making 
the improvements for round 2. After round 2, 83% of 
participants still indicated task 8 as the most troublesome. 
The interface design for tasks 5 and 8 is being revised for 
the next round of evaluations. 

6.2 Building systems 

Once a variety of TeC-enabled devices, i.e., players, are 
available, the TeC middleware enables users to easily 

assemble home automation systems to their own desires. To 
assess the engineering effort associated with making this 
possible, we set off to develop a number of players and 
demonstrate their use in working applications. 

We wrapped inexpensive devices for: 

• motion detection, using infrared 

• light sensing, which will detect lights being turned on 

• touch sensing, which can be attached to commonly 
stolen objects such as TV sets 

• filming, using a USB camera 

• user identification, using RFID technology. 

We also built emulators running on a PC for: 

• smart electric metres, which announce energy rates 

• thermostats, to control house heating and cooling 

• laundry dryers. 

Additionally, 

• we turned Android phones into players by developing a 
small application that receives call notifications and 
video streams (see phone in Figures 1 and 2) 

• built a power manager player that runs on Android 
and that enables users to monitor and complement 
automated energy management behaviours such as the 
ones in Figure 4. 

These players were demonstrated in the applications shown 
in Figures 10 and 11. 

Figure 10 Home surveillance system following the design in 
Figure 2, except that monitor fence sensors were 
replaced by three other kinds: touch, light, and 
infrared/motion (see online version for colours) 

 
Note: Activity make calls runs on the PC’s TeC 

middleware. 
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Figure 11 Energy management system: design (a) and user 
interfaces (b) (see online version for colours) 

 
(a) 

 
(b) 

Notes: Multiple users may run instances of power manager on their 
phones, thus sharing status messages and concurrently 
controlling appliances. The thermostat supports a request 
averaging policy, while the drier recognises user priority. 

The most significant implementation effort concerning the 
players was the communications library for messages and, 
especially, video streaming. We investigated several off-the-
shelf products to stream video, but these turned out to be too 
unwieldy for our simple purposes. We ended up writing a 
simple piece of code that captures and sends a sequence of 
still images over regular TCP sockets, and that has a much 
smaller memory footprint and better frame rate and jitter 
than the products we had tried. 

Concerning messages, the communications library offers 
a simple API to send and receive messages, taking care of 
parsing the XML for both briefings and application events. 
Parsing was implemented over the packages supported by 
different Java platforms: XMLBeans for Java standard 
edition, and XMLSpy for Android. 

Once the communications library was in place, the effort 
of implementing each player by wrapping the corresponding 
device driver was measured in hours. For those players that 
include a user interface, that effort was proportional to the 
desired sophistication. 

7 Related work 

Other work has addressed end-user development of 
ubicomp systems. We distinguish two groups of 
contributions. A first group offers languages to interconnect 
devices in a smart home. These languages range from 
written sentences with a very restricted English vocabulary, 
InterPlay (Messer et al., 2006), to graphical metaphors such 
as jigsaw puzzles, Jigsaw (Humble et al., 2003), to specific 

diagrammatic languages, PIP (Chin et al., 2006), to tangible 
interfaces using physical cubes and RFID proxies for the 
devices themselves, respectively AutoHan (Blackwell and 
Hague, 2001) and FedNet (Kawsar et al., 2008). A second 
group of contributions adds language constructs to describe 
contextual conditions. These conditions are expressed either 
as restricted English sentences, CAMP (Truong et al., 
2004), as if-then rules expressed using a succession of 
menus on a cell phone, HYP (Barkhuus and Vallgårda, 
2003), as orchestration rules over a taxonomy of features 
and context, Pantagruel (Drey et al., 2009), or using a 
diagrammatic notation to express spatial co-location and 
temporal order, iCAP (Sohn and Dey, 2003). 

Concerning the choice of medium for the language, TeC 
is closer to the contributions that employ a diagrammatic 
language (Humble et al., 2003; Chin et al., 2006). 
Diagrammatic languages are considerably more expressive 
than tangible languages and are more precise than  
restricted sentences in English (Ko and Myers, 2004). While 
other diagrammatic languages support connecting existing  
ports in devices, TeC supports a spreadsheet-like  
metaphor that allows end users to define new ports, i.e., 
events and data streams, conditions to be monitored and 
transmitted payload. Concerning context-awareness, TeC’s 
expressiveness is closer to iCAP, and richer than the non-
diagrammatic languages (Truong et al., 2004; Barkhuus and 
Vallgårda, 2003). While iCAP allows the expression of 
rules where a condition triggers an action, TeC additionally 
allows the easy expression of rules where a contextual 
condition triggers the deployment or reconfiguration of an 
entire team, with its set of features and behaviours.  
TeC goes further than existing work in supporting the 
design of systems distributed across multiple spaces, all in a  
secure way. 

The implementation of TeC builds on lessons learned in 
other software infrastructures for ubicomp, namely the 
authors’ prior work in Project Aura (Sousa et al., 2006, 
2008; Sousa, 2005), and others (Román et al., 2002; 
Ponnekanti et al., 2001). An especially relevant area is 
location-aware service discovery. Broadcast-based 
discovery addresses location by administratively 
configuring network routers and bridges to limit the 
broadcast of service requests to a network partition, e.g., 
(Chakraborty et al., 2006). This becomes awkward when the 
intended scope of discovery does not match a particular 
network partition. 

Work in directory-based discovery adopts a 
representation of location based on attribute-value pairs 
(Adjie-Winoto et al., 1999; IETF, 1999; Campo and Garcia-
Rubio, 2006), possibly complemented by indicating a 
specific directory host (Waldo, 2000; Raverdy et al., 2006), 
or hierarchy of hosts (Czerwinski et al., 1999), to further 
scope the discovery. However, attribute-value matching in 
the discovery mechanism is purely syntactic and any 
reasoning about proximity or containment is left  
to the application code. In contrast, the TeC discovery 
infrastructure understands physical location at a semantic 
level, and is able to reason about proximity and containment 
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among two intermixable representations: human-readable 
physical addresses and coordinates generated by systems 
such as GPS. 

8 Future work 

The work so far demonstrated prototypes of the several 
components in Figure 5, which, with small amounts of 
computer-scientist-in-the-loop, came together in systems 
such as illustrated in Figures 10 and 11. 

Ongoing work concentrates on taking the integration of 
these components to a level of maturity that enables end 
users to discover players, and develop, deploy, change, and 
redeploy their applications assisted only by TeC’s 
automated tools. Chief among those enhancements are 

a have players interpret any activity sheet that may be 
produced by a user interacting with the editor, as 
opposed to fairly application-specific sheets 

b fully integrate automated player discovery and the 
advanced features illustrated in Figure 2 and Figure 4. 

Once this tool maturity is reached, evaluation of the overall 
usability of the TeC concepts will be carried out via  
hands-on user studies covering the entire end-user 
development lifecycle. Such maturity is necessary since  
the tools need to encourage users towards exploratory 
behaviours: flexible home automation of the kind 
envisioned here opens a new domain to a population of 
users unfamiliar with its possibilities. 

Future enhancements to the TeC language include 
relating desired features to human-perceived time, such as 
‘at night’ on ‘in the summer’, in addition to the relations 
already supported between features and space and human 
presence (e.g., Figures 2 and 4). 

9 Conclusions 

The expansion of computing into physical infrastructures, 
such as buildings and energy distribution, gives rise to 
technical and usability challenges. Chief among those 
challenges is the need to match user expectations, under 
penalty of rejection and circumvention of the very features 
designed to protect users and improve their quality of live. 

Conventional application development by professional 
engineers collapses under the economics of the problem. No 
matter how sophisticated, no single solution will satisfy all 
users in all circumstances. Ideally, each end user would 
design a personalised solution, and evolve it as he 
understands and changes his mind about the required 
features and behaviours. 

TeC offers an end-user design language for the 
automation of smart spaces. The four systems presented in 
this paper illustrate the features of TeC and its applicability 
to surveillance and energy management. This paper 
illustrated two concrete syntaxes for TeC, supported by 
editors for two different platforms: personal computers and 
smart phones. 

Irrespectively of the concrete syntax, the key traits of 
TeC include a declarative semantics akin to spreadsheets for 
describing the roles of distributed autonomous players. The 
activities of players coalesce into a team behaviour by 
means of exchanging asynchronous messages triggered by 
user-defined conditions. Typical features of devices such as 
sensors and actuators are captured in predefined activity 
types, and system-specific features are customised by end 
users and captured in activity sheets. 

The relationship between an activity sheet and a player 
is akin to the relationship in SOA between a service 
description and a service provider: an activity sheet 
describes what needs to be done and a player provides the 
means to do it. Advantages of this separation include the 
ability to deploy the same team design at different locations, 
with different sets of players, and the ability to recover from 
player failures, without changing the design. 

TeC aims for a sweet spot between expressiveness and 
usability, including innovative and powerful design 
constructs while keeping their use simple. These design 
constructs include the expression of spatial constraints, 
awareness of location and boundaries of semantically 
meaningful spaces, awareness of the presence and identity 
of users within those spaces, and constructs for dynamically 
activating and deactivating features in response to events 
recognised at the application level. 
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