
Int. J. Space-Based and Situated Computing, Vol. X, No. Y, 200X 1

Copyright © 200X Inderscience Enterprises Ltd.

TeC: end-user development of software systems for
smart spaces

João P. Sousa*, Daniel Keathley, Mong Le,
Luan Pham, Daniel Ryan, Sneha Rohira,
Samuel Tryon and Sheri Williamson
Computer Science Department,
George Mason University,
4400 University Drive 4A5,
Fairfax, 22030 Virginia, USA
E-mail: jpsousa@cs.gmu.edu
E-mail: dkeathle@gmu.edu
E-mail: mle8@gmu.edu
E-mail: lpham6@gmu.edu
E-mail: dryan4@masonlive.gmu.edu
E-mail: srohira@gmu.edu
E-mail: stryon1@gmu.edu
E-mail: swillif@masonlive.gmu.edu
*Corresponding author

Abstract: This paper presents TeC, a framework for end-user design, deployment, and evolution
of applications for smart spaces. This work is motivated by the current gap between traditional
software development approaches and end user desire to easily personalise and evolve their
systems for smart spaces. TeC is precise enough to support the fully automated deployment of
systems designed by end users, and it addresses important characteristics of ubiquitous
computing, namely, the ability to describe dynamic adaptations and to relate system features to
physical location and to the presence and identity of users.
 TeC is described by example, with four home automation systems concerning surveillance
and energy management. The paper also discusses the implementation of the TeC middleware
and preliminary evaluation concerning usability and engineering effort.

Keywords: design methodology; end-user development; smart buildings; home automation;
situated computing, spaced-based computing.

Reference to this paper should be made as follows: Sousa, J.P., Keathley, D., Le, M., Pham, L.,
Ryan, D., Rohira, S., Tryon, S. and Williamson, S. (xxxx) ‘TeC: end-user development of
software systems for smart spaces’, Int. J. Space-Based and Situated Computing, Vol. X, No. Y,
pp.000–000.

Biographical notes: João P. Sousa received his PhD in Computer Science from Carnegie Mellon
in 2005. Currently, he is an Assistant Professor with the Computer Science Department at George
Mason University. His research interests include software architectures, usability, security, and
self-* properties for ubiquitous computing, in which he worked for the past ten years.

Daniel Keathley is a graduate student who contributed to different components of the
implementation and user studies as part of his coursework at George Mason University.

Mong Le is a graduate student who contributed to different components of the implementation
and user studies as part of her coursework at George Mason University.

Luan Pham is a graduate student who contributed to different components of the implementation
and user studies as part of his coursework at George Mason University.

Daniel Ryan is a graduate student who contributed to different components of the implementation
and user studies as part of his coursework at George Mason University.

Sneha Rohira is a graduate student who contributed to different components of the
implementation and user studies as part of her coursework at George Mason University.

2 J.P. Sousa et al.

Samuel Tryon is a graduate student who contributed to different components of the
implementation and user studies as part of his coursework at George Mason University.

Sheri Williamson is a graduate student who contributed to different components of the
implementation and user studies as part of her coursework at George Mason University.

1 Introduction

The pervasion of computing into the spaces where we live,
work, and travel is challenging conventional wisdom about
software development. Application domains of ubiquitous
computing, also known as ubicomp, include energy
management in buildings, transportation, assisted living,
home automation and surveillance, etc. In addition to
mobile devices, ubicomp encompasses the use of devices
embedded or scattered in spaces ranging from homes to
subway stations to streets and farms.

Traditional software development has relied on design
methodologies that expect stakeholders to agree on a set of
requirements for a system before it is implemented by
software engineers. In contrast, ubicomp often targets open
systems in informal domains where users come and go
freely, each user may have a different set of expectations,
and no central authority dictates the desired system
behaviours.

Context-aware systems, with their adaptability to the
surrounding circumstances, are an important step forward.
However, also their adaptive context-aware behaviours need
to be agreed on by stakeholders beforehand, and the
difficulty to change those decisions after being cast into
software causes end users to feel at the mercy, rather than in
control of technology (Barkhuus and Dey, 2003).

In these domains, system requirements are too
personalised, too specific to circumstances, and may change
too often to make the approach of hiring engineers to make
every change economically viable or even fast enough to be
useful.

A promising approach is to empower end users to design
and deploy their own personalised systems. Today,
however, mainstream methods and tools for software
development are inaccessible to end users. Developing the
kinds of systems described above entails programming for
network communications, concurrent threads, timeouts,
exceptions, and adaptive behaviours, all of which are
notoriously hard to use effectively, even by professional
engineers. Furthermore, current software design methods
are mute about physical location, making it impossible to
relate desired behaviours and spatial context at the design
level. Today, that relation is hardwired into the code, and
into the way systems are deployed and administered.

This paper presents TeC, a framework for end-user
design, deployment, and evolution of applications for
ubicomp. TeC is meant for a range of end users, from home
owners to domain experts, such as facility administrators
and health-care professionals.

To become accessible to end users, TeC departs from an
algorithmic view of computing in favour of a declarative

view similar to spreadsheets. In the latter, there is no
algorithm or ‘main’ programme: all formulas are
asynchronously recalculated whenever the values they refer
to are updated. Similarly, computation and communications
in TeC are triggered asynchronously and overall system
behaviour is emergent.

TeC is precise enough to enable the fully automated
deployment of systems. For that, it builds on prior
work that addressed the formal operational semantics and
the automated verification of desired behaviours (Sousa,
2010). It also includes constructs that address important
characteristics of ubicomp, namely:

a the situatedness of features in physical locations
meaningful to end users, such as rooms and buildings

b awareness of user presence and identity

c dynamic adaptation of application features in response
to application-level events.

Broadly, this work builds on principles of service
orientation (SOA) and its supporting mechanisms, such as
automated service discovery (Zhu et al., 2005).

The contributions in this paper include descriptions of

a the TeC language, by example

b editors for personal computer and smart phone
platforms

c middleware that facilitates system deployment and
evolution

d an empirical study that helped tune and obtain
preliminary results on the framework’s usability.

In the remainder of this paper, Section 2 introduces TeC,
while Sections 3 and 4 describe constructs to address space
and personalisation of behaviours, respectively. Section 5
discusses implementation, including the integration of
legacy players, space-aware discovery, dynamic deployment
of teams, and security and privacy issues. Section 6
describes the evaluation and Section 7 compares TeC with
related work. Section 8 describes future work and Section 9
summarises the main points of the paper.

2 TeC

A TeC system, called a team, consists of a collection
of players with no central component responsible for
coordinating each step of the action. Players are
computing-enabled devices ranging from computers and
smart phones, to smoke and motion detectors, to microwave
ovens, clothes driers and smart power metres. A team’s

 TeC: end-user development of software systems for smart spaces 3

overall function results from the joint effect of the activities
carried out by the individual players.

Activities generalise the concepts of process,
computational service, and function of a device.
Specifically, activities may be of short duration with a
discrete output, like service invocation; they may be
long-lasting with a succession of inputs and outputs, like
processes; or they may last for months without producing an
output, like the function of a smoke detector.

End users may design different teams to serve purposes
such as ‘surveillance’, or ‘energy management’. A team
design includes activity sheets, describing the role of each
player in the team, and communication paths for channelling
asynchronous messages and data streaming between players
(more below).

Deploying a team consists of two operations: discovery
and briefing. Concrete players for carrying out the activities
in a team are discovered at run time by the TeC middleware,
which then briefs the players about their role in the team.
Once briefed, players interact with their environment and
with each other with no further intermediation or central
coordination.

Figure 1 illustrates a team design for surveilling the
perimeter at a small farm belonging to a hypothetical
end user, Anne. The team overview, on the top left, shows
three activities: monitor fence, film and phone. The
communication paths link output events to input events,
respectively shown as and , and output to input data
streams, shown as and . The figure also shows select
details for each of the activity sheets.

Team designs are specified by end users by interacting
with an editor (more in Section 5). If at any point Anne is
not happy with the way the team in Figure 1 is operating,
she might add more activities, rewire the routing of
messages and data among players, or change the entries in

the activity sheets, which support a level of syntactical
complexity similar to the formulas in a spreadsheet.

2.1 Activities

To add an activity to a team, end users customise an activity
sheet starting from an activity type. Typically, activity types
would result from a community standardisation effort and
would be downloadable or shipped with TeC-enabled
devices.

Activity types define input events, data streams, and
internal outcomes: property values that may change during
operation. For example, whether a motion sensor has been
tripped, a Boolean outcome, or the temperature sensed by a
thermometer, a numeric outcome.

When Anne added the film activity in the design shown
in Figure 1, descriptions for the input events on and off and
for output stream vid out are automatically copied from the
activity type. These correspond to features that are intrinsic
to a filming device, and are shown in the activity sheet but
cannot be changed by Anne.

The tab outcomes (not shown for the sake of space) in
the sheet for monitor fence includes descriptions for
Boolean outcomes lean and break. As above, these
descriptions are copied from the type and cannot be changed
by Anne.

Users customise activity sheets by defining output
events, the conditions that trigger such events, and
message payload. In the out evt tab for monitor fence,
Anne defined event alert and its triggering condition
lean | break. Payload attributes are shown in rows with a
name on the left and a value on the right. In the example,
Anne added and two payload attributes dial and msg that
will travel with the message issued when the event occurs
(more on communication below).

Figure 1 Design of a team for surveilling the perimeter at Anne’s small farm (see online version for colours)

Notes: The fence is equipped with sensors that detect animals leaning against the wire, or breaking it. If that happens, a call is

issued to Anne’s cell phone, streaming video captured from the fence so that the situation can be assessed. Anne may press
key 5 on her phone, indicating that no further action is required from the system.

4 J.P. Sousa et al.

Anne also bought a TeC-enabled phone at a local store,
which came with an activity type describing input events
such as call, input data streams such as vid in, and outcomes
such as recognising key presses by analysing tones on the
line. Anne customised the sheet with output event ok, to be
triggered when outcome keyPress takes the value 5.

Sheet customisation may include defining new input
events in addition to those that come with the activity type.
The observation of such events and the values of their
payloads may then be used anywhere in the out evt tab.

Defining new input events is especially useful when
users wish to include a generic activity in a team. Unlike
specialised activity types, the generic type includes no
definitions of input events, streams, or outcomes, and may
be played by any computing-enabled device.

The team in Figure 2 includes a generic activity make
calls which facilitates making calls to different destinations
depending on circumstances and in response to alerts issued
by any sensor s. Anne defined two input events for make
calls, fence and handled, and made an explanatory note
for handled but not for fence. In the example, output event
call Anne is triggered as soon as fence is observed.

2.2 Triggering output events

Event call 911 in Figure 2 illustrates a less trivial triggering
condition, meant to wait a short while for user reassurance,
and lacking that, issue a call to the emergency number.

Triggering conditions may include the operators:

• P(e, t), that postpones the validity of e by time t

• T(e1, e2), that toggles between true and false as e1 and
e2 become true, respectively

• e R(t), that becomes valid with e and then rests for time
t, ignoring e until that time is elapsed.

In Figure 2, P(fence, 0:01) sets a one minute time out after
a message is received from the fence, and T(fence,
handled) disables the reaction to the fence alert by
becoming false once handled is observed.

The R operator can be used in monitor fence to reduce
repeated alerts, for example, due to a horse repeatedly
leaning against the fence for scratching its hindquarters.
Specifically, by making lean | break R(0:02) the trigger
condition for alert, a sensor will refrain from issuing further
alerts for two minutes after being activated the first time.

In general, triggers are Boolean expressions that may
include logical operators and, & or |, not, !, as well as
predicates on values using comparison operators such as
equals, greater than, etc. For example, if tempF is an
outcome of a temperature sensor measured in degrees
Fahrenheit, then tempF > 50 & tempF < 80 is a valid
expression. The name of an input event is an expression that
becomes true each time the event is observed.

Because output events occur at discrete points in time
while conditions may remain true for a long time, an event
occurs when its trigger becomes true. The trigger needs to
become false before the event can occur again.

2.3 Communication

The occurrence of an output event causes a message to be
sent along the communication path(s) attached to it, and in
turn that will cause the occurrence of the input event(s) at
the end of the path(s). In Figure 1, the occurrence of event
ok on phone causes (sending a message whose reception
causes) event off on filming. Event alert causes both call on
phone and on on film.

Figure 2 End user Anne redesigned the team in Figure 1 to support a large fence with multiple sensors and multiple cameras (see online
version for colours)

Notes: When a sensor is activated, a camera within 20 metres of that sensor is turned on. Also, a call to 911 will be issued if Anne

cannot be reached or does not handle the alert.

 TeC: end-user development of software systems for smart spaces 5

To keep matters simple for end users, paths may connect
events freely and the matching of attributes in the payload is
best effort, based on attribute name. In Figure 1, attributes
dial and msg on the outgoing message are matched to
attributes dial and msg on input event call. Since on has no
attributes, the payload of the message is discarded in film
upon triggering the input event.

While best effort matching saves users from the tedious
work required by method invocation in mainstream
languages, it may lead to unintended errors. To help users
manage this tradeoff, upon user request, the editor
highlights which attributes are being matched in a
connection. Additionally, players should have reasonable
defaults to all attributes of input events.

3 Space

Teams may be widely distributed, with some players
deployed in one space, such as Anne’s farm, and others
somewhere else, such as her friend Bob’s house, or from
Anne’s point of view “where I am now”.

To make it easy for end users to design and deploy
distributed teams, TeC combines automated discovery of
players with explicit spatial constraints in team design. Such
constraints are used to guide the discovery mechanisms, i.e.,
to scope discovery to the spaces of interest for the user. For
that, all players are made aware of their location (more in
Section 5) and the TeC language defines the property loc for
all entities.

Spatial constraints are indicated in the form name @
space, to be read name at space, and may show in one of
two ways. First, constraints matching human-perceived
boundaries, such as a room, building, or piece of property.
These are shown in the team design by a shaded rectangle
enclosing the activities that take place at the named space.
All activities in Figure 2 take place within the farm.

Second, a range around a location of interest. These are
indicated by a shaded area with round corners labelled
name @ radius * location, to be read, name at radius
around location. In the figure, film takes place within a
20 metre range of the activated sensor, s.

Location in team design is specified either by
reference to the location of a known entity, e.g., s.loc or
Anne.loc, or by indicating a human-readable address
of the form city/street-address/room. For example, Alice-
Springs.NT-0870.au/456.windy-road/kitchen.2 indicates
the kitchen in Apartment 2 at 456 Windy Rd in Alice
Springs. Users may define aliases for a location, such as
farm (specific address not shown here), or a list of locations,
such as trusted spaces, listing the addresses where a user is
comfortable deploying his or her teams. The discovery
mechanisms described in Section 5 are capable of
reasoning about containment and proximity of such location
expressions.

In Figure 2, the activity monitor fence is carried out by
all the players (fence sensors) found within the boundaries
of the farm. In TeC, finding one player to carry out an
activity is indicated by a single box, and finding all such

players is indicated by stacked boxes. In the latter case, a
label precedes the activity name and output events
emanating from the stacked boxes, e.g., s in s:monitor
fence and s.alert. This label refers to the specific player
emitting the event and can be used elsewhere in the design.
In the example, s is used to constrain the discovery of a
camera to a vicinity of s.loc.

The set of players carrying out an activity described by a
stacked box may change dynamically as players enter or
leave the prescribed space. For example, if Anne
buys extra sensors of type monitor fence and deploys
them at the farm, they will be automatically discovered and
instantaneously incorporated into the surveillance team,
since that is the intent expressed in the team design.

The example in Figure 2 illustrates
a the placement of teams within spaces, with players

being discovered both within a fixed location and at a
vicinity that follows the occurrence of events at run
time

b incorporating all players within a space that can
perform that activity

c the specification of timeouts.

4 Personalised behaviours

An important feature of teams is the ability to adopt
different configurations and behaviours depending on which
users are present. For example, suppose that a hypothetical
user, Bob, installed a smart power metre at his home that
issues pricing signals reflecting the load on the power grid
(http://www.smartmeters.com/). To reduce the energy bill,
Bob would like the clothes dryer, a heavy energy consumer,
to pause drying during peak rates and to automatically
resume during lower rates.

Figure 3 shows Bob’s initial design to save energy at
Bob’s house (Bob’s alias for his home address). The team
includes two unnamed sub teams: one at the laundry room,
and the other at the electric cabinet. Operator in the space
constraint for the sub teams refers to the space of the
enclosing team: Bob’s house.

However, Bob’s wife Mary is not happy with the new
feature, since she would like to have her drying cycles run
uninterrupted. To accommodate that, Bob changed his
design to Figure 4. Now, the sub team in the laundry room
includes activity track(Bob).

Figure 3 When the smart metre detects rate changes, it informs
the clothes dryer, which pauses drying at peak rates
(see online version for colours)

6 J.P. Sousa et al.

Figure 4 If Bob is present in the laundry room when the dryer is
started, the smart metre joins the team and sends
pricing signals to the dryer (see online version
for colours)

Activities of type track take as a parameter the id of the
entity to track and may use a variety of means to do so
(Hightower and Borriello, 2001; Covington et al., 2002;
Asmidar and Jais, 2009). In the sheet for track(Bob), not
shown for the sake of space, the trigger for event save is set
to T(enter, leave) & drying, which captures the intention to
issue event save if the dryer is started while Bob is in the
laundry room. Outcomes enter and leave are defined in the
track type, and correspond to the tracked entity entering and
leaving the space where the track activity is deployed.
Operator T works as described in Section 2.

Events save and done are used to control, respectively,
starting and stopping the sub team at the electric
cabinet. A sub team without such operators is deployed and
retired with the enclosing team, and ultimately at the users
request. A sub team with these operators is deployed once
an event reaches , and retired either with the enclosing
team, or when an event reaches . In the example, the
electric sub team is deployed once save is announced: the
metre is then briefed for activity smart metre and starts
sending peak and low events to the dryer. Whenever this
sub team is stopped, the smart metre device keeps metering
and possibly participating in other teams: it is just not part
of save energy.

This example illustrates features to detect the presence
and identify specific users in a space, and the inclusion of
rules in a team design to automatically start and stop sub
teams. These two constructs were used to design a team that
personalises its behaviour at run time, depending on who is
present in a space.

Figure 5 Informal picture of the TeC infrastructure (see online
version for colours)

5 Implementation

In addition to the players, which take centre stage, support
for TeC relies on three kinds of components: editors of team
designs, team managers (TM) present at each space, and
space resolvers (SR) deployed throughout the internet: see
Figure 5. Having infrastructural components such as TMs
and SRs, as opposed to adopting a purely peer-to-peer
approach, makes it easier for end users to control the
participation of players in privately owned spaces.

• Editors enable end users to edit team designs, and
include commands to deploy and retire a team.

• TM oversee the set of players within a geographical
area and may coordinate the deployment of distributed
teams with other TMs. Their role is divided into:
1 player tracker registers players and monitors their

physical location and performance
2 deployer facilitates deploying, updating, and

retiring teams, briefing players as needed
3 user tracker identifies users entering and leaving

the space, keeping track of their location within the
space

4 gatekeeper facilitates communicating with other
TMs while controlling access to the space as well
as the release of any information to the outside.

• SR map space constraints, such as specified in teams
designs, to the TMs that will help discover the desired
players. For this role, SRs take into account security
and privacy policies transmitted by gatekeepers.

The communication between distributed components,
including the communication of events between the players
in a team, is carried in XML over the network transport
(currently TCP/IP).

5.1 Players and activities

For becoming TeC-enabled, players need the computational
capability to interpret activity sheets, following the
operational semantics in Sousa (2010), and the ability to
communicate over the network.

Two kinds of players can be distinguished: players that
require specialised devices, such as motion detectors, and
those which can be realised by generic computing devices,
such as make calls in Figure 2. For players that require
specialised hardware, we are investigating the use of
low-power system-on-chip, (e.g., http://www.gainspan.com/
products/GS1011_single_chip.php), although we have done
functionally equivalent prototypes using inexpensive
sensors with device drivers running on a computer
(http://www.phidgets.com/).

Turning such devices into TeC players consists of
wrapping their device drivers with code that implements the
TeC protocols (more below). These wrappers have the
ability to run multiple activity sheets simultaneously; for
example, a smart metre may participate in several teams,

 TeC: end-user development of software systems for smart spaces 7

each with its own conditions to trigger different output
events (e.g., Figure 4).

Players deployed at fixed locations, such as smoke
detectors and smart metres, have their location set with the
TM during deployment. Players that run in mobile devices
such as cell phones leverage the device’s own location
awareness mechanisms, such as GPS, and send updates to
the TM every time their location changes past a radius set
during deployment.

5.2 Editors

An initial implementation of an editor works over the
Eclipse platform (http://www.eclipse.org/modeling/gmp/)
and can be used to produce team designs with the core
features shown in this paper. An additional implementation
was developed over AndroidTM (http://www.android.com/),
which is shown in Figures 6 and 7.

Several instances of editors may run on different
computers/phones within a space: each editor is registered
with the local TM following a protocol similar to registering
players (Section 5.4). Team designs reside with the editors,
and are shared with TMs for deployment purposes. Editing
team designs is supported while a team is deployed, and the
team is re-briefed with the changes upon explicit user
indication.

To help users design their teams, editors proactively
query TMs for the players available within a space and the
activity types they support: exploratory discovery.

5.3 Space-aware discovery

Discovery requests have type constraints, either a specific
activity type or any, and spatial constraints. For example,
Anne may want to know about all monitor fence sensors

deployed within her farm, and Bob may want to know about
all players of any type deployed at his house. In addition to
exploratory queries for editing purposes, the TM confirms
player availability during team deployment.

Specifically, the deployer (in the TM) examines the
spatial constraints for the team and directs discovery
requests to either the local player tracker or to the
gatekeeper. A team employs local players by default, e.g.,
Figure 1, or when a constraint refers to a part of the local
space, e.g., subteams in Figures 2 through 4.

Figure 6 Screenshots of the Android editor, (a) part way through
designing the team in Figure 1, and (b) associating
message payload to event alert (see online version
for colours)

(a) (b)

Figure 7 Continuing the design in Figure 6, (a) adding the film activity (b) adding a data stream between film and phone and
(c) connecting the ends of the stream to the data ports (see online version for colours)

(a) (b) (c)

8 J.P. Sousa et al.

Discovery may be done after team deployment, when
spatial constraints contain a variable, e.g., s in @20m *
s.loc in Figure 2. For simplicity, we do not distinguish the
case where s refers to one of a set of fixed players, from the
case where s is mobile. Both cases are handled by having
the TM broker the delivery of events. In the example, the
activity sheets for monitor fence instruct the sensors to
send alert events to the TM. Upon receiving an alert from a
player s, the TM discovers a player for film that satisfies the
location constraint, briefs it, and then relays the event.
Additionally, when asked to discover all players for an
activity within a space, e.g., monitor fence, the deployer
registers a callback with the player tracker for being notified
when a player for that activity enters the space.

In its simplest form, discovery of one player within a
space results in an arbitrary player capable of carrying out
the desired activity. Frequently, there will be only one such
player, e.g., a smart metre in the electric cabinet. However,
there are also cases where the user is not best served by an
arbitrary choice among several candidates. In the example
above, the choice of a camera @20m * s.loc might be
refined with the notion that closer to s is better. More
general optimality criteria might also include desired
features and quality of service preferences, e.g., resolution
or colour. Prior work by the first author included
sophisticated discovery criteria (Sousa et al., 2006, 2009),
and we are currently investigating how to extend TeC with
optional optimality criteria, without losing its intended
simplicity of use.

When the spatial constraints for an activity extend
beyond the local space, the deployer directs discovery
requests to the gatekeeper. The gatekeeper relays the request
to a SR, which, akin to a name server in internet’s domain
name system (DNS), identifies and relays the request to the
one or more TMs that satisfy both the spatial constraints and
mutual trust policies.

5.4 Security and trust

Security and trust are addressed at two levels:

a within a space

b across spaces, for purposes of team deployment and
interaction.

Protection within a space starts with player deployment
(Kawsar et al., 2008). Users control the admission of players
into a space by explicitly swiping an RFID tag associated
with each player by a reader attached to the TM. The tag
contains a public key for the player, which is used by the
player tracker to initiate communication and set up a secure
channel between the player and the TM. Fresh symmetric
keys are generated by the deployer for communication
within each team, which are passed during briefing.

In addition to players, the identity of the users
themselves needs to be verified by the space. Doing so
unobtrusively is a separate and active area of research
(Sabzevar and Sousa, 2011). For simplicity, the current
prototype uses RFID technology (Sousa et al., 2005).

Protection across spaces is coordinated by the
gatekeeper. For example, suppose that Anne is visiting her
friend Bob, consults him about the team design, and then
decides to deploy the team in Figure 2. Because that team
includes activities at the farm, a discovery request is
directed by the TM at Bob’s home to the TM at the farm
(facilitated by SRs, as described in 5.3).

In this example, the security issues are

1 the TM at Bob’s home becomes aware that Anne is
deploying a team at her farm

2 the TM at the farm becomes aware of Anne’s presence
at Bob’s

3 the TMs at both spaces become aware of Anne’s design

4 the TM at the farm needs to recognise Anne and grant
the request.

Issues (1–3) could be alleviated if an editor running on
Anne’s phone were to communicate directly with the TM at
the farm, for example, via a cellular telephony link secured
using previously shared encryption keys. The flip side of
this security strategy is that users have to become aware of,
and manage information release to remote TMs vs. the local
TM. This may become complex when users intend to
leverage local players, or to deploy teams with a mix of
local and remote players.

To make it simpler for end users to manage security,
editors currently register with the local TM at a space and
rely on it to facilitate all discovery and deployment requests.
The flip side of this strategy is that users need to decide
whether to trust a space before editing/deploying their team
designs at that space.

With either security strategy, the fourth issue concerns
Anne’s identification and access control at the farm. To
facilitate that, the editor identifies the request as coming
from Anne and signs it using her (private key) credentials. If
Anne is known to the farm and authorised to deploy teams,
which she is, the gatekeeper at the farm relays the request to
the player tracker and subsequent briefings to the players
themselves.

5.5 Briefing

The deployer briefs each player during team deployment,
and may do so again, if the user subsequently changes the
team design and requests the changes to come into effect.

Figure 8 shows the briefing transmitted to monitor
fence in Figure 1, which includes the activity sheet and
communication paths that start or end in monitor fence. In
this example, the briefing includes the specification of
output event alert, with expressions for its trigger and
payload, and the communication paths to events call and
on. Specifically, each target element identifies the IP
address, port, and symmetric encryption key to use in that
channel (elided in the figure). While in transit, this briefing
is itself encrypted with the symmetric key shared between
the player for monitor fence and the TM.

 TeC: end-user development of software systems for smart spaces 9

Figure 8 (a) Briefing for the activity sheet in Figure 1 and
(b) message sent towards phone when lean | break is
satisfied

<activity-sheet activity=“monitor fence”>
 <out-evt>
 <evt name=“alert” trigger=“lean | break”>
 <att name=“dial” value=“"555 111 1234"”/>
 <att name=“msg”
 value=“"There’s a possible break in the

perimeter. "”/>
 <target in-evt=“call” ip=“phone ip” port=“***”

key=“******”/>
 <target in-evt=“on” ip=“film ip” port=“***”

key=“******”/>
 </evt>
 </out-evt>
 <out-stream/> <in-evt/> <in-stream/>
</activity-sheet>

(a)

<evt name=“call”>
 <att name=“dial” value=“555 111 1234”/>
 <att name=“msg” value=“There’s a possible break in the

perimeter.”/>
</evt>

(b)

The briefing protocol described above supports stateless
activities, such as the ones throughout the examples in this
paper. Or to be more precise, activities which state can be
discarded when the team is retired and when the activity
passes to a different player during deployment (e.g., film in
Figure 2). Should it become necessary to preserve an
activity’s state in such circumstances, then this briefing
protocol could be extended so that the TM facilitates the
transmission of state snapshots between players (Sousa
et al., 2005; Sousa, 2005).

5.6 Dynamic deployment and adaptation

For team designs that include rules for starting and
stopping sub teams, e.g., Figure 4, the discovery and
briefing of players may be done after a team is deployed.
Similarly to the case of space constraints with variables
discussed in Section 5.3, the TM registers to receive the
events leading to the start and stop operators, and reacts to
the reception of those by deploying or retiring the sub team,
as requested.

As in prior work (Sousa et al., 2006), the TM could be
extended to play an active role in fault tolerance and
adaptation to performance degradation of players. However,
the design herein reflects the goal of minimising the role of
infrastructural components after the team is deployed.
Currently, the TM only intervenes during deployment and
retirement of a team/subteam.

6 Evaluation

The evaluation of this work has so far covered the following
two aspects: first, the usability of the editor, and second, the
effort associated with bootstrapping TeC towards building
real systems for a smart home. As the implementations
mature, more encompassing evaluations will be carried out
(Section 8).

6.1 Usability

The usability of the Android editor was evaluated in two
rounds of user studies.

The first round emphasised formative evaluation: it was
carried out in the early stages of development, with a
prototype. The study population consisted of 12 volunteers
among the graduate students taking a user interface design
course. These students were totally unfamiliar with TeC,
and after an explanation of five minutes were asked to carry
out concrete tasks concerning the creation and modification
of team designs. Users performed these tasks unassisted.

Feedback from users was helpful in identifying unclear
aspects and awkward interactions, which led to some
redesign and polishing of the interface. The interface in
Figures 6 and 7 results from these changes.

The second round took place a few weeks later, with the
same population but now with the polished interface. This
round emphasised usability metrics defined for each
concrete task, including completion rate (percentage of
successful attempts at completing tasks), average number of
user errors (users taking an unintended action), and average
number of clicks, i.e., screen touches, to complete each task.
The evaluators set success criteria for each metric based on
their understanding of what would be acceptable by users,
and according to the complexity of each task.

The measurements for eight simple tasks are shown in
Figure 9. The ideal completion rate for tasks is 100%,
corresponding to users always succeeding in finishing what
they set out to do. Although the rates for tasks 2, 75%, and
8, 42%, had been significantly below this goal during the
formative evaluation, they were brought all the way up to
100% with the revised interface.

The ideal number of user errors would be zero,
corresponding to users always knowing exactly what to do
to accomplish their intent. However, this ideal is unlikely to
be attainable by absolute beginner users such as those in
these studies. Therefore, the evaluators set non-zero criteria
for less trivial tasks such as 2, 4, and 8. Adding a
connection, task 8, had the highest number of user errors
due to users having trouble locating the command. The
redesigned interface in round 2 reduced the trouble on this
task by almost half.

10 J.P. Sousa et al.

Figure 9 Results of users studies (see online version for colours)

User difficulty on editing trigger conditions, task 5, came as
a surprise: users became confused by the popping up of the
on-screen keyboard as soon as they clicked the editable
field. Because the appearance of the keyboard reshuffled the
screen layout, users could only see all the fields again by
hitting the back button to remove the soft keyboard. This
problem also raised the number of clicks for task 5.

Ideally, the average number of clicks to complete a task
would be below a threshold that reflects the task’s
complexity. Except for task 5, due to the issue above, all
others came on or below this threshold.

In addition to quantitative metrics, users were also
surveyed with questions honed to identify points for
improvement and preferred designs among alternatives. The
answers to these questions already proved useful in making
the improvements for round 2. After round 2, 83% of
participants still indicated task 8 as the most troublesome.
The interface design for tasks 5 and 8 is being revised for
the next round of evaluations.

6.2 Building systems

Once a variety of TeC-enabled devices, i.e., players, are
available, the TeC middleware enables users to easily

assemble home automation systems to their own desires. To
assess the engineering effort associated with making this
possible, we set off to develop a number of players and
demonstrate their use in working applications.

We wrapped inexpensive devices for:

• motion detection, using infrared

• light sensing, which will detect lights being turned on

• touch sensing, which can be attached to commonly
stolen objects such as TV sets

• filming, using a USB camera

• user identification, using RFID technology.

We also built emulators running on a PC for:

• smart electric metres, which announce energy rates

• thermostats, to control house heating and cooling

• laundry dryers.

Additionally,

• we turned Android phones into players by developing a
small application that receives call notifications and
video streams (see phone in Figures 1 and 2)

• built a power manager player that runs on Android
and that enables users to monitor and complement
automated energy management behaviours such as the
ones in Figure 4.

These players were demonstrated in the applications shown
in Figures 10 and 11.

Figure 10 Home surveillance system following the design in
Figure 2, except that monitor fence sensors were
replaced by three other kinds: touch, light, and
infrared/motion (see online version for colours)

Note: Activity make calls runs on the PC’s TeC

middleware.

 TeC: end-user development of software systems for smart spaces 11

Figure 11 Energy management system: design (a) and user
interfaces (b) (see online version for colours)

(a)

(b)

Notes: Multiple users may run instances of power manager on their
phones, thus sharing status messages and concurrently
controlling appliances. The thermostat supports a request
averaging policy, while the drier recognises user priority.

The most significant implementation effort concerning the
players was the communications library for messages and,
especially, video streaming. We investigated several off-the-
shelf products to stream video, but these turned out to be too
unwieldy for our simple purposes. We ended up writing a
simple piece of code that captures and sends a sequence of
still images over regular TCP sockets, and that has a much
smaller memory footprint and better frame rate and jitter
than the products we had tried.

Concerning messages, the communications library offers
a simple API to send and receive messages, taking care of
parsing the XML for both briefings and application events.
Parsing was implemented over the packages supported by
different Java platforms: XMLBeans for Java standard
edition, and XMLSpy for Android.

Once the communications library was in place, the effort
of implementing each player by wrapping the corresponding
device driver was measured in hours. For those players that
include a user interface, that effort was proportional to the
desired sophistication.

7 Related work

Other work has addressed end-user development of
ubicomp systems. We distinguish two groups of
contributions. A first group offers languages to interconnect
devices in a smart home. These languages range from
written sentences with a very restricted English vocabulary,
InterPlay (Messer et al., 2006), to graphical metaphors such
as jigsaw puzzles, Jigsaw (Humble et al., 2003), to specific

diagrammatic languages, PIP (Chin et al., 2006), to tangible
interfaces using physical cubes and RFID proxies for the
devices themselves, respectively AutoHan (Blackwell and
Hague, 2001) and FedNet (Kawsar et al., 2008). A second
group of contributions adds language constructs to describe
contextual conditions. These conditions are expressed either
as restricted English sentences, CAMP (Truong et al.,
2004), as if-then rules expressed using a succession of
menus on a cell phone, HYP (Barkhuus and Vallgårda,
2003), as orchestration rules over a taxonomy of features
and context, Pantagruel (Drey et al., 2009), or using a
diagrammatic notation to express spatial co-location and
temporal order, iCAP (Sohn and Dey, 2003).

Concerning the choice of medium for the language, TeC
is closer to the contributions that employ a diagrammatic
language (Humble et al., 2003; Chin et al., 2006).
Diagrammatic languages are considerably more expressive
than tangible languages and are more precise than
restricted sentences in English (Ko and Myers, 2004). While
other diagrammatic languages support connecting existing
ports in devices, TeC supports a spreadsheet-like
metaphor that allows end users to define new ports, i.e.,
events and data streams, conditions to be monitored and
transmitted payload. Concerning context-awareness, TeC’s
expressiveness is closer to iCAP, and richer than the non-
diagrammatic languages (Truong et al., 2004; Barkhuus and
Vallgårda, 2003). While iCAP allows the expression of
rules where a condition triggers an action, TeC additionally
allows the easy expression of rules where a contextual
condition triggers the deployment or reconfiguration of an
entire team, with its set of features and behaviours.
TeC goes further than existing work in supporting the
design of systems distributed across multiple spaces, all in a
secure way.

The implementation of TeC builds on lessons learned in
other software infrastructures for ubicomp, namely the
authors’ prior work in Project Aura (Sousa et al., 2006,
2008; Sousa, 2005), and others (Román et al., 2002;
Ponnekanti et al., 2001). An especially relevant area is
location-aware service discovery. Broadcast-based
discovery addresses location by administratively
configuring network routers and bridges to limit the
broadcast of service requests to a network partition, e.g.,
(Chakraborty et al., 2006). This becomes awkward when the
intended scope of discovery does not match a particular
network partition.

Work in directory-based discovery adopts a
representation of location based on attribute-value pairs
(Adjie-Winoto et al., 1999; IETF, 1999; Campo and Garcia-
Rubio, 2006), possibly complemented by indicating a
specific directory host (Waldo, 2000; Raverdy et al., 2006),
or hierarchy of hosts (Czerwinski et al., 1999), to further
scope the discovery. However, attribute-value matching in
the discovery mechanism is purely syntactic and any
reasoning about proximity or containment is left
to the application code. In contrast, the TeC discovery
infrastructure understands physical location at a semantic
level, and is able to reason about proximity and containment

12 J.P. Sousa et al.

among two intermixable representations: human-readable
physical addresses and coordinates generated by systems
such as GPS.

8 Future work

The work so far demonstrated prototypes of the several
components in Figure 5, which, with small amounts of
computer-scientist-in-the-loop, came together in systems
such as illustrated in Figures 10 and 11.

Ongoing work concentrates on taking the integration of
these components to a level of maturity that enables end
users to discover players, and develop, deploy, change, and
redeploy their applications assisted only by TeC’s
automated tools. Chief among those enhancements are

a have players interpret any activity sheet that may be
produced by a user interacting with the editor, as
opposed to fairly application-specific sheets

b fully integrate automated player discovery and the
advanced features illustrated in Figure 2 and Figure 4.

Once this tool maturity is reached, evaluation of the overall
usability of the TeC concepts will be carried out via
hands-on user studies covering the entire end-user
development lifecycle. Such maturity is necessary since
the tools need to encourage users towards exploratory
behaviours: flexible home automation of the kind
envisioned here opens a new domain to a population of
users unfamiliar with its possibilities.

Future enhancements to the TeC language include
relating desired features to human-perceived time, such as
‘at night’ on ‘in the summer’, in addition to the relations
already supported between features and space and human
presence (e.g., Figures 2 and 4).

9 Conclusions

The expansion of computing into physical infrastructures,
such as buildings and energy distribution, gives rise to
technical and usability challenges. Chief among those
challenges is the need to match user expectations, under
penalty of rejection and circumvention of the very features
designed to protect users and improve their quality of live.

Conventional application development by professional
engineers collapses under the economics of the problem. No
matter how sophisticated, no single solution will satisfy all
users in all circumstances. Ideally, each end user would
design a personalised solution, and evolve it as he
understands and changes his mind about the required
features and behaviours.

TeC offers an end-user design language for the
automation of smart spaces. The four systems presented in
this paper illustrate the features of TeC and its applicability
to surveillance and energy management. This paper
illustrated two concrete syntaxes for TeC, supported by
editors for two different platforms: personal computers and
smart phones.

Irrespectively of the concrete syntax, the key traits of
TeC include a declarative semantics akin to spreadsheets for
describing the roles of distributed autonomous players. The
activities of players coalesce into a team behaviour by
means of exchanging asynchronous messages triggered by
user-defined conditions. Typical features of devices such as
sensors and actuators are captured in predefined activity
types, and system-specific features are customised by end
users and captured in activity sheets.

The relationship between an activity sheet and a player
is akin to the relationship in SOA between a service
description and a service provider: an activity sheet
describes what needs to be done and a player provides the
means to do it. Advantages of this separation include the
ability to deploy the same team design at different locations,
with different sets of players, and the ability to recover from
player failures, without changing the design.

TeC aims for a sweet spot between expressiveness and
usability, including innovative and powerful design
constructs while keeping their use simple. These design
constructs include the expression of spatial constraints,
awareness of location and boundaries of semantically
meaningful spaces, awareness of the presence and identity
of users within those spaces, and constructs for dynamically
activating and deactivating features in response to events
recognised at the application level.

Acknowledgements

The work herein was funded in part by the National Science
Foundation (NSF) under grant CCF-0820060. The authors
wish to thank the following students for their prior
contributions to several prototypes: A. El Masri, N. Mirzaei,
A.P. Sabzevar and V. Tzeremes.

References
Adjie-Winoto, W. et al. (1999) ‘The design and implementation of

an intentional naming system’, in 7th Symposium on
Operating Systems Principles, ACM, pp.186–201.

Asmidar, R. and Jais, J. (2009) ‘A review on extended role
based access control (E-RBAC) model in pervasive
computing environment’, in 1st Intl. Conf. Networked Digital
Technologies, IEEE CS, Ostrava, Czech Republic,
pp.533–535.

Barkhuus, L. and Dey, A. (2003) ‘Is context-aware computing
taking control away from the user? Three levels of
interactivity examined’, in 5th Intl. Conf. Ubiquitous
Computing, Springer LNCS, Seattle, WA, pp.159–166.

Barkhuus, L. and Vallgårda, A. (2003) ‘Smart home in your
pocket’, in Adjunct. Procs. of the 5th Intl Conf Ubiquitous
Computing, Ubicomp., Seattle, WA, pp.165–166.

Blackwell, A. and Hague, R. (2001) ‘AutoHAN: an architecture
for programming the home’, in IEEE Symposia on Human
Centric Computing Languages and Environments, Arlington,
VA, pp.150–157.

 TeC: end-user development of software systems for smart spaces 13

Campo, C. and Garcia-Rubio, C. (2006) ‘DNS-based service
discovery in ad hoc networks: evaluation and improvements’,
in 11th Intl. Conf. Personal Wireless Communications,
Springer LNCS, pp.111–122.

Chakraborty, D. et al. (2006) ‘Toward distributed service
discovery in pervasive computing environments’, IEEE
Transactions on Mobile Computing, Vol. 5, No. 2, pp.97–112.

Chin, J., Callaghan, V. and Clarke, G. (2006) ‘An end-user
programming paradigm for pervasive computing
applications’, in Intl. Conf. on Pervasive Services, IEEE,
Lyon, France, pp.325–328.

Covington, M. et al. (2002) ‘A context-aware security architecture
for emerging applications’, in 18th Computer Security
Applications Conf., IEEE CS, San Diego, CA, pp.249–260.

Czerwinski, S.E. et al. (1999) ‘An architecture for a secure service
discovery service’, in 5th Intl. Conf. on Mobile Computing
and Networking, ACM, Seattle, WA, pp.24–35.

Drey, Z., Mercadal, J. and Cousel, C. (2009) ‘A taxonomy-driven
approach to visually prototyping pervasive computing
applications’, in IFIP Working Conf. on Domain-Specific
Languages, Springer LNCS, Oxford, UK, pp.78–99.

Hightower, J. and Borriello, G. (2001) ‘Location systems for
ubiquitous computing’, IEEE Computer, Vol. 34, No. 8,
pp.57–66.

Humble, J. et al. (2003) ‘Playing with the bits: user-configuration
of ubiquitous domestic environments’, in 5th Intl. Conf.
Ubiquitous Computing, Ubicomp., Springer LNCS, Seattle,
WA, pp.256–263.

IETF (1999) SLP: Service Location Protocol. Internet Engineering
Task Force, available at http://tools.ietf.org/html/rfc2608
(accessed on 30 June 2011).

Kawsar, F., Nakajima, T. and Fujinami, K. (2008) ‘Deploy
spontaneously: supporting end-users in building and
enhancing a smart home’, in 10th Intl. Conf. Ubiquitous
Computing, Ubicomp, ACM, Seoul, Korea, pp.282–291.

Ko, A. and Myers, B. (2004) ‘Six learning barriers in end-user
programming systems’, in IEEE Symp. on Visual Languages
and Human Centric Computing., IEEE CS, Rome,
pp.199–206.

Messer, A. et al. (2006) ‘InterPlay: a middleware for seamless
device integration and task orchestration in a networked
home’, in 4th Intl. Conf. on Pervasive Computing and
Communications, PerCom., Pisa, Italy, pp.298–307.

Ponnekanti, S. et al. (2001) ‘ICrafter: a service framework for
ubiquitous computing environments’, in 3rd Intl. Conf.
Ubiquitous Computing, UbiComp., Springer Verlag, LNCS,
Atlanta, GA, pp.56–75.

Raverdy, P.G. et al. (2006) ‘Efficient context-aware service
discovery in multi-protocol pervasive environments’,
in 7th Intl. Conf. Mobile Data Management, IEEE CS.

Román, M. et al. (2002) ‘Gaia: a middleware infrastructure for
active spaces’, IEEE Pervasive Computing, Vol. 1, No. 4,
pp.74–83.

Sabzevar, A. and Sousa, J.P. (2011) ‘Authentication, authorization,
and auditing for ubiquitous computing: a survey and vision’,
Intl. Journal of Space-Based and Situated Computing, Vol. 1,
No. 1, to appear.

Sohn, T. and Dey, A. (2003) ‘iCAP: an informal tool for
interactive prototyping of context-aware applications’,
in Conf. on Human Factors in Computing Systems, extended
abstracts, ACM, Ft. Lauderdale, FL, pp.974–975.

Sousa, J.P. (2005) ‘Scaling task management in space
and time: reducing user overhead in ubiquitous-computing
environments’, PhD thesis, Carnegie Mellon University,
CMU-CS-05-123.

Sousa, J.P. (2010) ‘Foundations of team computing: enabling end
users to assemble software for ubiquitous computing’, in Intl.
Conf. on Complex, Intelligent and Software Intensive Systems,
IEEE CS, Krakow, Poland, pp.9–16.

Sousa, J.P. et al. (2006) ‘Task-based adaptation for ubiquitous
computing’, IEEE Trans on Systems, Man, and Cybernetics,
Part C, Special issue on Eng Autonomic Systems, Vol. 36,
No. 3, pp.328–340.

Sousa, J.P. et al. (2008) ‘Activity-oriented computing’, in
Advances in Ubiquitous Computing: Future Paradigms and
Directions, IGI Publishing, pp.280–315.

Sousa, J.P. et al. (2009) ‘A software infrastructure for user-guided
quality-of-service tradeoffs’, in Software and Data
Technologies, Springer CCIS, Vol. 47, pp.48–61.

Sousa, J.P., Poladian, V. and Schmerl, B. (2005) ‘Project Aura
demo video of the follow me scenario’, available at
http://www.cs.cmu.edu/~jpsousa/research/aura/followme.wm
v (accessed on 30 June 2011).

Truong, K.N., Huang, E.M. and Abowd, G.D. (2004) ‘CAMP: a
magnetic poetry interface for end-user programming of
capture applications for the home’, in 6th Intl. Conf.
Ubiquitous Computing, Ubicomp., Springer LNCS,
Nottingham, England, pp.143–160.

Waldo, J. (2000) The Jini Specification, 2nd ed., Addison-Wesley-
Longman, Boston, MA, USA.

Zhu, F., Mutka, M. and Ni, L. (2005) ‘Service discovery in
pervasive computing environments’, IEEE Pervasive
Computing, Vol. 4, No. 4, pp.81–90.

