
Software Model Checking:
Theory and Practice

Lecture: Specification Checking -
Specification Patterns

Copyright 2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are copyrighted
materials and may not be used in other course settings outside of Kansas State University and the University of Nebraska
in their current form or modified form without the express written permission of one of the copyright holders. During this
course, students are prohibited from selling notes to or being paid for taking notes by any person or commercial firm
without the express written permission of one of the copyright holders.

Specification Checking : Patterns 2

Objectives

Understand the purpose of the temporal
specification pattern system

encode design knowledge of expert specifiers and
make this knowledge accessible through patterns to
novice users
purpose is not to avoid learning the semantics of
temporal logics

Understand the basic temporal classifications
and temporal scopes in the pattern system
Be able to apply the pattern system to realize
relatively complex specifications

Specification Checking : Patterns 3

Outline

Safety/Liveness classification
Manna/Pnueli classification
Temporal Specification Patterns
Assessment of the Pattern System
Pointers to other User Friendly Temporal
Specification Notations

Specification Checking : Patterns 4

Motivation

[]((Q & !R & <>R) -> (P -> (!R U (S & !R))) U R)

Temporal properties are not always easy to write or read

Hint: This a common structure
that one would want to use in
real systems

Answer:
P triggers S between Q (e.g., end of system
initialization) and R (start of system shutdown)

Specification Checking : Patterns 5

Motivation

Many specifications that people want to write can be
specified, e.g., in both CTL and LTL

LTL: [](P -> <>Q) CTL: AG(P -> AF Q)

Example: action Q must respond to action P

Example: action S precedes P after Q

LTL: []!Q | <>(Q & (!P W S))CTL: A[!Q W (Q & A[!P W S])]

Specification Checking : Patterns 6

Motivation

Capture the experience base of expert designers
Transfer that experience between practitioners
Classify properties

leverage in implementations
e.g., specialize to a particular pattern of properties

allow informative communication about properties
e.g, “This is a response property with an after scope.”

We use Specification Patterns to…

Specification Checking : Patterns 7

Other Classifications

Safety vs Liveness
Independent of a particular formalism

Practically, it is important to know the
difference because…

It impacts how we design verification algorithms
and tools

Some tools only check safety properties (e.g., based on
reachability algorithms)

It impacts how we run tools
Different command line options are used for Spin

It impacts how we form abstractions
Liveness properties often require forms of abstraction
that differ from those used in safety properties

Specification Checking : Patterns 8

Safety Properties

Informally, a safety property states that
nothing bad ever happens

Examples
Invariants: “x is always less than 10”
Deadlock freedom: “the system never reaches a state where no
moves are possible”
Mutual exclusion: “the system never reaches a state where two
processes are in the critical section”

As soon as you see the “bad thing”, you know the
property is false
Safety properties can be falsified by a finite-prefix of an
execution trace

Practically speaking, a Spin error trace for a safety property is a
finite list of states beginning with the initial state

Specification Checking : Patterns 9

Liveness Properties

Informally, a liveness property states that
something good will eventually happen

Examples
Termination: “the system eventually terminates”
Response properties: “if action X occurs then eventually action
Y will occur”

Need to keep looking for the “good thing” forever
Liveness properties can be falsified by an infinite-suffix
of an execution trace

Practically speaking, a Spin error trace for a liveness property is
a finite list of states beginning with the initial state followed by
a cycle showing you a loop that can cause you to get stuck and
never reach the “good thing”

Specification Checking : Patterns 10

Assessment

Safety vs Liveness is an important
distinction

However, it is very coarse
Lots of variations within safety and liveness
A finer classification might be more useful

Specification Checking : Patterns 11

Manna & Pnueli Classification

Classification based on syntactic structure of formula

Reactivity

Persistence Response

Safety Guarantee Obligation

Specification Checking : Patterns 12

Manna & Pnueli Classification

Canonical Forms

Safety: [] p
Guarantee: <> p
Obligation: [] q || <> p
Response: [] <> p
Persistence: <> [] p
Reactivity: []<>p || <>[]q

Specification Checking : Patterns 13

Assessment

The Manna-Pnueli classification is
reasonable
However, their classification is based on
the structure of formula, and we would
like to avoid having engineers begin their
reasoning by reasoning about the
structure of formula
A classification based on the semantics of
properties instead of syntax might be
more useful for non-experts

Specification Checking : Patterns 14

Specification Pattern System

http://patterns.projects.cis.ksu.edu/
Developed by Dwyer, Avrunin, Corbett.
A pattern system for presenting, codifying, and
reusing property specifications for finite-state
verification (e.g., model-checking).
Developed by examining over 500 temporal
specifications collected from the literature.
Organized into a hierarchy based on the
semantics of the requirement.

Specification Checking : Patterns 15

The Specification Pattern System

A property specification pattern…
…is a generalized description of a commonly
occurring requirement on the permissible
state/event sequences in a finite-state model
of a system.
…describes the essential structure of some
aspect of a system’s behavior and provides
expressions of this behavior in a range of
formalisms.

Specification Checking : Patterns 16

The Response Pattern

To describe cause-effect relationships between a pair of events/states. An
occurrence of the first, the cause, must be followed by an occurrence of the
second, the effect. Also known as Follows and Leads-to.

Intent

Mappings: In these mappings, P is the cause and S is the effect

[](P -> <>S)

<>R -> (P -> (!R U (S & !R))) U R

[](Q -> [](P -> <>S))

[]((Q & !R & <>R) -> (P -> (!R U (S & !R))) U R)

[](Q & !R -> ((P -> (!R U (S & !R))) W R)

Globally:

Before R:

After Q:

Between Q and R:

After Q until R:

LTL:

Specification Checking : Patterns 17

The Response Pattern (continued)

Mappings: In these mappings, P is the cause and S is the effect

AG(P -> AF(S))

A[((P -> A[!R U (S & !R)]) | AG(!R)) W R]

A[!Q W (Q & AG(P -> AF(S))]

AG(Q & !R -> A[((P -> A[!R U (S & !R)]) | AG(!R)) W R])

AG(Q & !R -> A[(P -> A[!R U (S & !R)]) W R])

Globally:

Before R:

After Q:

Between Q and R:

After Q until R:

CTL:

Examples and Known Uses:

Response properties occur quite commonly in specifications of concurrent systems.
Perhaps the most common example is in describing a requirement that a resource
must be granted after it is requested.

Relationships
Note that a Response property is like a converse of a Precedence property.
Precedence says that some cause precedes each effect, and...

Specification Checking : Patterns 18

Pattern Hierarchy

Occurrence Patterns
require states/events to occur or not to occur

Order Patterns
constrain the order of states/events

Property Patterns

Occurrence Order

Absence

Universality Existence

Bounded Existence Precedence

Response Chain
Precedence

Chain
Response

Classification

Specification Checking : Patterns 19

Occurrence Patterns

A state/event does not occur within a given scope

A given state/event must occur within a given scope

Absence:

Existence:

Bounded Existence:
A given state/event must occur k times within a given scope

variants: a least k times, at most k times

Universality
A given state/event must occur throughout a given scope

Specification Checking : Patterns 20

Order Patterns

A state/event P must always be preceded by a state/event Q
within a scope

A state/event P must always be followed a state/event Q within a
scope

Precedence:

Response

Chain Precedence
A sequence of state/events P1, …, Pn must always be preceded by a
sequence of states/events Q1, …, Qm within a scope

Chain Response
A sequence of state/events P1, …, Pn must always be followed by a
sequence of states/events Q1, …, Qm within a scope

Specification Checking : Patterns 21

Pattern Scopes

Global

Before Q

After Q

Between Q and R

After Q until R

State sequence

Q R Q Q R Q

Specification Checking : Patterns 22

For You To Do…

Pause the lecture…
Using the pattern system, identify the (a) propositions, (b) base temporal
pattern and (c) scope, and use the pattern web-pages to construct the
corresponding LTL property for each of the seven requirements listed on
the following slides. Express the temporal property by filling in the holes
of the pattern with the identified propositions. Below is a completed
example…

When a client A makes a method call to a server B, it will eventually
receive the result of its call if the server is OK.

Answer:

Propositions: clientASendB, clientAreceiveB
Pattern & Scope: “response” pattern with “global” scope
Property: {clientAreceiveB} responds to {clientASendB} globally

Requirement:

LTL: [](clientASendB -> <>clientAreceiveB)

Specification Checking : Patterns 23

For You To Do…

Between an enqueue(d1) and empty(true) there must
be a dequeue(d1)

Requirement 1:

It is always the case that when the req_search_state is
not enabled, then the req_close_state shall not be
closed and will remain not closed until the
req_search_state is enabled.

Requirement 2:

Specification Checking : Patterns 24

For You To Do…

After OpeningNetworkConnection, an ErrorMessage will
pop up in response to a NetworkError

Requirement 3:

Every time the form is patron_view it must have been
preceeded by a corresponding request_view.

Requirement 4:

Specification Checking : Patterns 25

For You To Do…

Checkout is 0 until the Status of the book is charged or
hold.

Requirement 5:

Only one of the 3-counting semaphore's four
semaphore place's may be occupied at any one time.

Requirement 6:

…end of “For You To Do” requirements.

Specification Checking : Patterns 26

For You To Do (Answers)

Between an enqueue(d1) and empty(true) there must
be a dequeue(d1)

Requirement 1:

Answer:

Propositions: enqueue(d1), emtpy(true), dequeue(d1)
Pattern & Scope: “existence” pattern with “between” scope
Property: {dequeue(d1)} exists between {enqueue(d1)} and empty(true)
LTL: [](enqueue(d1) & !empty(true)

-> (!empty(true) W (dequeue(d1) & !empty(true))))

Specification Checking : Patterns 27

For You To Do (Answers)

It is always the case that when the req_search_state is
not enabled, then the req_close_state shall not be
closed and will remain not closed until the
req_search_state is enabled.

Requirement 2:

Answer:

Propositions: req_search_state_enabled, req_close_state_closed
Pattern & Scope: “absence” pattern with “after-until” scope
Property: {req_close_state_closed} is absent after
{!req_search_state_enabled} until {req_search_state_enabled}
LTL: [](!req_search_state_enabled

-> (!req_close_state_closed W req_search_state_enabled))

Specification Checking : Patterns 28

For You To Do (Answers)

After OpeningNetworkConnection, an ErrorMessage will
pop up in response to a NetworkError

Requirement 3:

Answer:

Propositions: OpeningNetworkConnection, ErrorMessage, NetworkError
Pattern & Scope: “response” pattern with “after” scope
Property: {ErrorMessage} responds to {NetworkError} after
{OpeningNetworkConnection}
LTL: [](OpeningNetworkConnection -> [](NetworkError -> <>ErrorMessage))

Specification Checking : Patterns 29

For You To Do (Answers)

Every time the form is patron_view it must have been
preceded by a corresponding request_view.

Requirement 4:

Answer:

Propositions: form==patron_view, form==request_view
Pattern & Scope: “precedence” pattern with “global” scope
Property: {form==request_view} precedes {form==patron_view}
globally
LTL: !form==patron_view W form==request_view

Specification Checking : Patterns 30

For You To Do (Answers)

Checkout is 0 until the Status of the book is ‘charged’
or ‘hold’ (the last two actions need not occur).

Requirement 5:

Answer:

Propositions: status==charged, status==hold, checkOut==0
Pattern & Scope: “precedence” pattern with “global” scope
Property: {status==charged | status==hold} precedes {!checkOut==0}
globally
LTL: (checkOut==0) W (status==charged | status==hold)

Specification Checking : Patterns 31

For You To Do (Answers)

Only one of the 3-counting semaphore's four
semaphore place's may be occupied at any one time.

Requirement 6:

Answer:

Propositions: place0, place1, place2, place3
Pattern & Scope: “universal” pattern with “global” scope
Property: {(place0 && !place1 && !place2 && !place3) ||

(!place0 && place1 && !place2 && !place3) ||
(!place0 && !place1 && place2 && !place3) ||
(!place0 && !place1 && place2 && !place3)} is universal globally

Specification Checking : Patterns 32

Between vs After-Until

Note that the Between scope only requires the
pattern to hold if a matching R exists for the Q.
In contrast, After-Until requires the pattern to
hold after every Q until an R is seen (and the
matching R need not occur).

Between Q and R

After Q until R

State sequence

Q R Q Q R Q

Specification Checking : Patterns 33

Between vs After-Until

Between Q and R

After Q until R

State sequence

Q R Q Q R Q

LTL mappings for the Existence Pattern

[](Q & !R -> (!R W (P & !R)))
{P} exists between {Q} and {R}

{P} exists after {Q} until {R}
[](Q & !R -> (!R U (P & !R)))

Requires P to
always occur
after Q

Requires P to
always occur
after Q

Simply says R cannot
occur until a P occurs
(without R)

Simply says R cannot
occur until a P occurs
(without R)

Specification Checking : Patterns 34

Open vs Closed Intervals

Does this scope declaration allow P to occur at the state
where Q first becomes true (e.g., is the Q/R interval
closed on the left)?
Does this scope declaration allow P to occur at the state
where R becomes true (e.g., is the Q/R interval closed
on the right)?

Between Q and R

After Q until R

State sequence

Q R Q Q R Q

Consider: {P} is universal between {Q} and {R}

Specification Checking : Patterns 35

Open vs Closed Intervals

Is the interval open/closed on the left/right?

Consider: {P} is universal between {Q} and {R}

[]((Q & !R & <>R) -> (P U R))

LTL Mapping:

This requires P to occur in the same state where
Q becomes true (interval is closed on left).
This does not require P to occur in the state
where R becomes true due to the semantics of
the “Until” operator (interval is open on right).

note: P is allowed to occur when R becomes true

Specification Checking : Patterns 36

Assessment

Although the patterns are a useful guide
to constructing temporal logic, they are
not an excuse for not learning LTL, CTL,
etc.
The English description of particular
patterns/scope is ambiguous, and you
need to be able to look at the LTL, CTL,
etc. to determine the exact meaning in
some circumstances.

Specification Checking : Patterns 37

For You To Do…

Pause the lecture…
Answer the following questions:

Consider the specification {P} is universal after {Q}. By examining the
LTL mapping, determine if P should hold at the first state where Q
holds if this specification is satisfied.
Consider the specification {P} is universal before {Q}. By examining
the LTL mapping, determine if P should hold at the first state where Q
holds if this specification is satisfied.
Consider the specification {P} is universal between {S} and {T}.

According to the LTL mapping, when the specification is satisfied, must P
occur when T first becomes true?
According to the LTL mapping, when the specification is satisfied, can S
occur without T?
According to the LTL mapping, when the specification is satisfied, if there is
no matching T for an S, is P required to hold after the S with no matching
T?

Repeat the questions immediately above for the specification {P} is
universal after {S} until {T}.

Specification Checking : Patterns 38

Response Chain

To describe a relationship between a stimulus event (P) and a sequence of
two response events (S,T) in which the occurrence of the stimulus event
must be followed by an occurrence of the sequence of response events
within the scope. In state-based formalisms, the states satisfying the
response must be distinct (i.e., S and T must be true in different states to
count as a response), but the response may be satisfied by the same state
as the stimulus (i.e., P and S may be true in the same state).

Intent:

P S T

…P triggers S followed by T in the given scope

1-stimulus, 2-response chain

Specification Checking : Patterns 39

Response Chain

To describe a relationship between two stimulus events (S,T) and a
response event (P) in which the occurrence of a sequence of the two
stimulus events must be followed by an occurrence of the response event.
In state-based formalisms, the states satisfying the stimulus must be
distinct (i.e., S and T must be true in different states to count as a
stimulus), but the response may be satisfied by the same state as the
stimulus (i.e., T and P may be true in the same state).

Intent:

S T P

…S followed by T triggers P in the given scope

2-stimulus, 1-response chain

Specification Checking : Patterns 40

Response Chain

LTL Mapping: 1-stimulus, 2-response chain

LTL Mapping: 2-stimulus, 1-response chain

[] (P -> <>(S & o<>T)) Globally:

[] (S & o<> T -> o(<>(T & <> P))) Globally:

Specification Checking : Patterns 41

Constrained Response Chain

To describe a relationship between a stimulus event (P) and a sequence of
two response events (S,T) in which the occurrence of the stimulus event
must be followed by an occurrence of the sequence of response events
within the scope. Moreover, Z must not occur between S (inclusive) and T.

Intent: 1-stimulus, 2-response chain with absence constraint

…P triggers S followed by T without Z in the given scope

P S T Z cannot
occur here.

Z cannot
occur here.

[] (P -> <>(S & !Z & o(!Z U T)))Globally:

Specification Checking : Patterns 42

Constrained Response Example

If between an enqueue of d1 and the initiation of a
forward iteration, d1 is not dequeued, then it will
eventually be produced by the iteration.

Requirement:

Answer:

Propositions: d1-enqueue, init-forward-iteration, d1-dequeued, d1-produced
Pattern & Scope: constrained 2-stimulus 1-response chain
Property: {d1-produced} responds to {enqueue-d1, init-forward-
iteration} without {!d1-dequeued}

Specification Checking : Patterns 43

Evaluation

555 TL specs collected from at least 35 different

sources

511 (92%) matched one of the patterns

Of the matches...

Response: 245 (48%)

Universality: 119 (23%)

Absence: 85 (17%)

Specification Checking : Patterns 44

Questions

Do patterns facilitate the learning of
specification formalisms like CTL and LTL?
Do patterns allow specifications to be written
more quickly?
Are the specifications generated from
patterns more likely to be correct?
Does the use of the pattern system lead
people to write more expressive
specifications?

Based on anecdotal evidence, we believe the answer to
each of these questions is “yes”

Based on anecdotal evidence, we believe the answer to
each of these questions is “yes”

