
Reliable Data Delivery in the Presence of
Uncontrollable Mobile Sinks in Low Power

Wireless Networks
Kevin Andrea

Department of Computer Science
George Mason University

Fairfax, VA, USA
kandrea@gmu.edu

Robert Simon
Department of Computer Science

George Mason University
Fairfax, VA, USA
simon@gmu.edu

Abstract—It is increasingly desirable for deeply embedded Low
Power and Lossy Network (LLN) systems to be able to in an
on demand fashion deliver stored data to mobile sinks whose
arrival patterns are entirely unpredictable. These LLNs are prone
to potentially severe data loss due to sudden congestion and
environmentally caused wireless transmission impairments. This
paper presents ROIST: Reliable network of Observable devices
with Itinerant Sinks Transporting Data. We demonstrate how to
use RPL (one of the standard LLN routing protocols) to support
simultaneous multiple convergecast tree instances arising from
unpredictable mobile sink patterns, introduce a novel congestion
control mechanism and automatically adapt to changing and un-
predictable wireless transmission conditions. ROIST is designed
to be be fully compatible with existing RPL implementations. We
have implemented ROIST in the Contiki-NG operating system
and evaluated its performance using COOJA. Our results show
that ROIST achieves high levels of reliable data delivery to mobile
sinks while minimizing congestion and adapting to wireless
transmission losses.

I. INTRODUCTION

An important class of Wireless Sensor Networks (WSN)
are applications that autonomously perform data collection
and upon demand deliver stored data readings to mobile
sinks. Examples include precision agriculture [1], disaster
management [2] and tactical military environments [3]. One
way to characterize these systems is by sink mobility patterns
[4]. They range from controllable and predictable, where sink
appearances and movements can both be modified and sta-
tistically predicted, uncontrollable but predictable, where sink
appearances and movements cannot be modified but can be
statistically predicted, and uncontrollable and unpredictable,
where sink appearances and movements appear random.

This paper presents the design, implementation and eval-
uation of the Reliable network of Observable devices with
Itinerant Sinks Transporting Data (ROIST) protocol architec-
ture. WSNs traditionally fall into the class of Low Power and
Lossy Networks (LLNs) that are designed to handle high loss
rates, instability, relatively low data transfer capabilities and
are energy and resource constrained. ROIST targets WSNs
in the LLN environment that require delivery of both stored
and real-time data to mobile sinks with uncontrollable and

unpredictable – random – mobility patterns. It is designed to
support multiple sinks that randomly appear and disappear at
different topological points.

RPL is the one of the de-facto routing protocols used for
data delivery in an LLN [5]. RPL supports on-demand routing
topologies that form Directed Acylic Graphs (DAGs) that
naturally support the many-to-one data delivery requirements
for mobile sinks. Since RPL was not initially designed with
mobility in mind there has been much research into incorporat-
ing mobility support inside of RPL [6]–[9]. ROIST is designed
to be interoperable with any RPL implementation that sup-
ports uncontrollable and unpredictable sink movements. We
demonstrate how to use RPL to support simultaneous multiple
convergecast trees.

ROIST’s performance goals are to maximize data delivery
for as long as a sink is in range of the WSN. This is accom-
plished by careful congestion control adaptive retransmission
strategies. One of ROIST’s operating modes is to have each
node transmit all of its data until a limit on outstanding packets
has been reached, which will trigger a checkpoint message to
the sink to check for any missing blocks. As will be seen
our approach works without the need to modify RPL. By
controlling both checkpoint timing and node transmission rates
the volume of data delivery to the sink can be dramatically
improved. ROIST organizes a network of homogenous re-
source constrained WSN node into a three-tier hierarchy. At
the bottom level packet losses will only be incurred by wireless
transmission impairments, while at the middle level packet
losses are due either to wireless transmission loss or network
congestion. The middle nodes detect congestion conditions and
piggyback this information using uptree RPL data packets. The
sink uses downtree messages for retransmission requests and
congestion control.

We evaluated ROISTs performance and overhead by imple-
menting the protocol using Contiki-NG, one of the standard
WSN operating systems. We then compared ROISTs perfor-
mance under a number of topologies, transmission conditions
and data management schemes. Our results indicate that
ROIST deliveries data delivery levels even for conditions of



high impairments and unpredictable mobility.

II. BACKGROUND AND RELATED WORK

The benefits of having mobile sinks for WSNs has long
been recognized. A number of WSN applications such as
disaster recovery and tactical military situations require mobile
collection points for data collection and management. Such
scenarios additionally suffer under congestion from ill-formed
networks, or heavy loss in noisy environments. Our work
targets resource constrained WSNs in such environments by
providing reliability in communications, using the RPL proto-
col to support convergecast in resource-poor WSNs.

There is a large body of literature focusing on modifying the
RPL protocol to support mobility [10]. The work described in
[6] supports multiple logical DAGS and backpressure routing.
It is specifically designed to support WSNs that are congestion
prone and require high throughput. MobiRPL [7] emphasizes
routing reliability over energy management and achieves this
by careful parent selection. The research presented [8] pushes
complexity into the static nodes in order to better support
mobile nodes. This work is extended [9] extends this approach
to use an by employing Kalman filters, but also requires that
mobile nodes have exact topological awareness. ROIST is
meant to be interoperable with most versions of RPL.

From a network management perspective hierarchical struc-
tures have long been recognized as one of the most powerful
ways to organize the network. One of the earliest proposals
for a hierarchical structure is presented in [11]. This work
uses s a source-node based virtual grid structure. When a sink
requires data local flooding is used to query the network. The
work in [12] uses a data dissemination strategy that controls
the advertisement of the fresh sink’s position by establishing
a dissemination tree that encapsulates all sensor nodes in the
network. Related to this work is TUFT [13]. Here the sink’s
mobility is modeled after the Gauss-Markov Mobility Model.

Our work assumes unpredictable sink movements. One
motivation for supporting these mobility patterns – inexpen-
sive UAS hardware – is that in practice network engineers
will encounter the problems of imprecise timing of arrivals,
the inability to fly in certain weather conditions, leading to
unpredictable arrivals, and the inability to maintain position
in certain weather conditions, leading to uncontrollable po-
sitioning relative to the forwarding nodes, which on demand
form the network with the Mobile Sink. This uncontrollable,
unpredictable model precludes much of the recent work in
mobility prediction. Finally, an example of a hierarchical ar-
chitecture for supporting unpredictable sink mobility is HOIST
[14]. This work supports multiple sink types and is built using
RPL. Due to its native support for RPL, ROIST is based on
concepts from HOIST.

With respect to loss in noisy environments, there has been
little work involving end-to-end communications patterns; a
majority of the research has favored congestion avoidance and
control within the convergecast modality. A 2019 survey on
the topic identified congestion, resulting from even low-rate
traffic, as one of the common issues with this scenario [15].

This follows with the very nature of convergecast routing,
where each device forwards towards a singular target sink,
which will increase congestion in all forwarding devices, as
they will receive traffic from each of their descendant devices
in addition to their own. Several approaches [16], [17] exist
for alleviating network congestion through multi-path routing
in RPL. This approach utilizes packet delivery information to
determine if congestion is contributing to undue packet loss. If
detected, alternate parent nodes are enabled and transmissions
will alternate between parents, to attempt to perform load
balancing and reduce the congestion on a particular path.

Such approaches do not address the problem of limiting
the data being transmitted itself, so in an application space
with untenable levels of traffic, the multi-path tradeoffs may
increase congestion on other pathways at the cost of reducing
network stability.

For ROIST, the goal was reliability in transmissions, not
directly in the avoidance of congestion, however, ROIST does
achieve reliable communications with multiple concurrently
active DAGs by limiting the scope of communications and
controlling for congestion within each DAG. Each DAG is
coordinated by the DAG root, which is one of the Bridge
devices. Each Bridge may support up to ρmax devices in an
RPL system and the Mobile Sink may support up to ρmax

Bridges. As such, at the maximum capacity, given a scenario
with a single Bridge directly connected to the Mobile Sink,
that Bridge will have up to ρ2max packets to forward per
transmission period of the devices. If the device only has up
to σ slots for queueing incoming packets, then the successful
forwards will be bounded by σ.

ROIST addresses this proactively by limiting each DAG
to a single coordinated data forward at a time. This reduces
the total system-wide transmissions at the upper-level back
to the number of Bridges, which is bounded by ρmax. The
benefit of this is that in an environment with noise and
frequent partitioning of the network through the uncontrolled
movements of the Mobile Sink, ROIST removes intermediate
sources of congestion and facilitates no more traffic than would
be present with only the upper-tier of Bridges alone. When
congestion does arise on the upper-tier DAG, ROIST uses
the end-to-end communications paradigm to send congestion
markers back to the originating data collectors, which then
autonomically adjust their send rates to reduce the overall
traffic until such congestion clears.

III. ROIST DESIGN

ROIST is a hybrid tree-cluster, three-tier hierarchical archi-
tecture that coordinates both data relay and data sink collection
from multiple, geographically segregated WSN deployments.
The objective of the architecture is to insulate the data
collection nodes (Collectors) from the arrival and intra-area
transit of a mobile sink (Mobile). This is accomplished through
intermediary relays (Bridges), which serve as DAG roots for
a deployment of Collectors. As the Mobile sink transits the
area, as is commonly the case with Unmanned Aerial System
devices, only the Bridges need update their routing. Figure 1



shows ROIST in operation, with a Mobile Sink receiving data
from the deployed Collectors, via the Bridges.

5
Collector

6
Collector

7
Collector

8
Collector

9
Collector

10
Collector

11
Collector

12
Collector

13
Collector

14
Collector

15
Collector

1
Bridge

2
Bridge

3
Bridge

M
Mobile Sink

Fig. 1: ROIST Overview with a Mobile Sink Collecting Data

This is accomplished through the use of RPL Instances. An
RPL Instance is defined by RFC 6550 [18] as a container for a
DAG root. By utilizing this concept, ROIST is able to achieve
a goal of utilizing RPL for the routing, without relying upon
any particular implementation decision. This will operate using
any Objective Function, with any configuration parameters for
RPL; it utilizes the extant RPL protocol for all of its routing,
in a generally configuration agnostic manner.

Following the arrival of the Mobile Sink ROIST uses
a simple handshake to validate connectivity. Each Bridge
concurrently begins iterating through its set of descendants and
sends a message to begin data transmissions. The Collector,
having received and acknowledged this message, suspends
data collection and begins transmissions.

The Collector has the current data staged in a circular buffer,
with the current data marked for transmission. The device then
loads B octets into the payload of the packet and transmits.
This process recurs in accordance with the packet send rate,
λ, preparing a new block of B octets and transmitting the
data. When Pmax packets are transmitted, the Collector will
instead generate a Check message to send to the Mobile Sink.
This message is the core of the Checkpoint system (described
below) used by ROIST. After Pmax packets are transmitted,
the Collector will request information from the Mobile Sink
as to the last contiguously received block of data, and the
next it is expecting. On successful transmissions, the Mobile
Sink will reply with the number of the next staged block to
transmit and the Collector will continue in this manner until
all data blocks have been transmitted and confirmed, at which
point, the Bridge proceeds to the next Collector while this one
resumes data collection.

From a routing perspective sink arrival constitutes the con-
struction and support of a new convergecast tree. Supporting
ROIST objectives requires addressing several fundamental
questions, including how to support multiple instances of
convergecast trees, how to overcome the inherent difficulty
of implementing the protocol in a necessarily RPL-based

resource constrained environment and how to deal with losses
due to either congestion or wireless loss.

A. Supporting multiple convergecast trees in RPL

With the objective of utilizing RPL in a configuration
agnostic manner, we sought to limit any modifications to those
strictly necessary to fill in the unstated needs of operating in a
multiple-instance environment – corresponding to supporting
convergecast trees – as pragmatically as possible. There is an
immediate dilemma pertaining to the discrimination of which
instance to join. RPL makes no provisions under the design
of a single instance only, so our architecture first necessitated
the creation of a categorical whitelist and blacklist system. As
the Instance ID field is defined as one-octet in length, we use
the upper nibble as an Instance category and the lower nibble
as the Instance identifier itself. This does not affect the transit
of ROIST packets across canonical RPL networks, but within
a ROIST system, we have Collectors only accepting Bridge
category Instances, while Bridges will only accept Mobile
category Instances. Without such protections, a Bridge that is
configured for two RPL Instances may overhear neighboring
Bridges forming their own DAGs for the Collectors and may
join all such Instances, leaving no capacity for establishing a
network with the Mobile Sink upon its eventual arrival.

Supporting multi-instance extensions requires support for
coordinated Instance timeouts. RPL maintains a Route Life-
time system for the route to remain available, measured in
Lifetime Units. For routing, this lifetime measurement resets
whenever a new packet arrives, indicating that the network
is alive and reachable. This is certainly fine for a static
deployment, however, with a mobile sink that is only present
occasionally, this leads to a false positive indicator that the sink
remains, despite being long since departed. The problem oc-
curs when a device receives a periodic DODAG configuration
(DIO) packet from a neighbor. These are sent out periodically
to both elicit new devices to join the DAG, as well as to
provide updated routing and link state information to those
within. Upon receipt of this message, the lifetime used will
reset, keeping the existence of the sink alive.

ROIST requires that any coordinating mobile sink to arrive
and take control of the network, but this is not possible
if the DAG is holding information of a prior mobile sink,
which would preclude joining the current one. As such,
this modification establishes a coordinated routing lifetime
that is shared on all outgoing DIO packets. When such
a packet is received by another node, it will only receive
the current remaining lifetime of the neighbor, and apply
max(lifetime, dio lifetime) in lieu of performing a full de-
fault lifetime reset. In this manner, when a mobile sink leaves,
all nodes on the DAG will balance their own internal lifetimes
with each other through their normal DIO transmissions and
will drop the instances in a coordinated manner, allowing for
the next mobile sink to arrive and take control.

As will be seen in Section III-B RPL Storing Mode is
needed for a key feature of ROIST: reliable data delivery. This
system is built using existing systems within RPL for point-



to-point communications. RPL achieves this by using Storing
Mode and DAO messages. When a node changes their parent,
a DAO message is generated and travels upwards towards the
DAG root. On each intermediate forwarding node, the DAO
provides information about the new descendant and the next
hop destination to forward all downward traffic through.

In general, RPL provides point-to-point communications
through the concept of a common ancestor. If the destination
target is unknown by the current node, then it will forward
towards the DAG root instead. At some level, to include
the DAG root, the destination will be a known descendant
and the packet is forwarded towards the registered next hop
until it is delivered. RPL implementations are limited in this
feature along two dimensions. First, it necessitates additional
state in the form of an additional routing table. Second,
device limitations on memory constrained devices limit the
reachability of devices.

On this second point, if the downward routing table was
constrained to ρmax entries, then the maximum number of
descendants for any given DAG root would likewise be ρmax

nodes. In ROIST, this would provide a total network size of
ρmax+1 devices per Bridge. In RPL, any excess devices added
would be lost in the higher levels, as the routing tables would
fill to capacity and prohibit acceptance of any further routing
information. Packets generated by the DAG root then would
have the lowest probability of containing the complete set of
descendants, precluding downward routing to a portion of the
deployed devices.

In Convergecast routing, the predominant flow is upwards
towards the DAG root. It is under this modality that the
modern, ”RPL-Lite” implementation was born, removing the
state from the downward routing tables to facilitate more mem-
ory for application use; this is a common paradigm amongst
IoT deployments. ROIST uses, as its core feature, downward
routing across multiple RPL Instances from the Mobile Sink to
the actual collector of the data being transferred. To facilitate
this, each Bridge iterates through its set of descendants and
coordinates each one to transmit their data to the Mobile Sink,
in full, before moving to the next collector. This removes all
intra-DAG sources of congestion and reduces the number of
packets being forwarded between Instances by the Bridges to
1 per transmission time unit.

This also solves the problem of end-to-end routing between
the Mobile Sink and the originating Collector of the data
being transferred. The Mobile Sink only needs an entry for
the Bridge forwarding the traffic. On reply, the Mobile Sink
uses the source address to send the acknowledgement to the
Bridge only. Once there, the Bridge forwards this to the
currently coordinated Collector. This enables the Collector to
received direct feedback from the Mobile Sink, despite having
no common DAG membership.

B. Reliable Data Delivery

The overall retransmission mechanism uses this Check-
pointing system, wherein any contiguously received data will
be acknowledged by the Mobile Sink back to the Collector.

Any gap in the received data will instead be used to update
the next expected block to the first that is missing. When
the Collector receives this Checkpoint Acknowledgement that
block N is expected, it will roll back through the queue
and continue retransmissions, beginning with block N , and
up to the current Pmax number of packets before it sends
another Check message, as depicted in Figure 2. This is
a logical window system that allows a resource-constrained
device the simplicity in requesting a retransmission of all
packets beginning with the first one that had failed to be
delivered. This is a key factor as the Mobile Sink is assumed
to be a device with the same resource restrictions as the other
nodes within this system.

0 1 2 3 4 5 6 7

B0 B1 B2 B3 0 B5 0 ...

Acknowledged
Pmax Window

Checkpoint-4

4 - Not Received

Fig. 2: ROIST Checkpointing

There are two principle sources of data loss that may tran-
spire between the Collector and the Mobile Sink and, as such,
the Collector uses this end-to-end flow-control mechanism to
attempt to control for the loss to maximize the successfully
delivered data while minimizing the duration the Mobile Sink
remains on station for the aggregate collection.

The first source is congestion. While ROIST removes the
issue of congestion within each Bridge-rooted DAG, there is
still the source of congestion at the upper-tier of the network,
in the DAG formed by the Bridges and rooted at the Mobile
Sink. Each of those Bridges does track the state of their σ
slots in the incoming packet queue. If the number of queued
packets approaches σ, then a congestion-flag is piggybacked
on all forwarded traffic from that Bridge to the Mobile Sink.
This form of ECN is achieved by setting the Payload Length
(the L/E Octet as depicted in Figure 3) to a 1, as none of the
traffic with ECN information contains any payload.

0 1 2 3 4 5 6 7

Type ID L/E Opt Data Block ...

Fig. 3: ROIST Header

The Mobile Sink aggregates and tracks the congestion flags
for all of its Bridges and, if any have flagged for congestion,
then the Mobile Sink will send a Congestion indicator on all
acknowledgements back to the Collectors. Once a Collector
receives this acknowledgement with a Congestion indicator
present, they will autonomically adjust λ by reducing the
number of packets per unit time being transmitted back to a



baseline level; this is the mechanism for reducing system-wide
congestion.

When a Collector receives an acknowledgement without a
congestion indicator, then it will increment the packets per unit
time to transmit. With sufficient acknowledgements without
congestion, this will again cap out at the λmax representing
the highest send rate possible.

The second primary source of loss is environmental.
Whether due to external noise, environmental affects, or
simply poor positioning by the Mobile Sink that leads to
higher data loss, this factor indicates that a higher degree of
retransmissions will be needed overall. To reduce the number
of unnecessary retransmissions of large data packets, ROIST
will autonomically reduce Pmax on any acknowledgement that
requires a rollback. Instead of continuing to send multiple
packets to the Mobile Sink at a time, which in turn may request
many of those packets to be retransmitted in the presence
of these environmental factors, ROIST instead reduces the
number of full data packets that can be sent at a time and
will therefore sent small Check messages more frequently.

As data is lost, then Pmax is reduced to force more frequent
checking with the Mobile Sink, reducing the amount of data
needed to be retransmitted. As data is acknowledged properly,
then Pmax is increased to allow more data transmissions
between checks.

Algorithm 1 Autonomic Flow Control Adjustments in ROIST
Ncheckpoint ← ROIST.header.opt
Nexpected ← dataset.nextBlock
if Ncheckpoint 6= Nexpected then

Pmax ← max(Pmax − 1, 1)
else

Pmax ← min(Pmax + 1,MAX PACKETS)
end if
Congestion← ROIST.header.ecn . L/E Field
TU ← Time Units . Seconds per Send Interval
SI ← Send Interval . TUs between Sends
if Congestion = 1 then . Double Time between Sends

λ← max(1/((SI ∗ TU) ∗ 2), 1)
else . Linearly Reduce Time between Sends

λ← min(1/((SI + 1) ∗ TU),MAX SENDRATE)
end if

These two autonomic adjustments, shown in Algorithm 1
are the core of ROIST and utilize the end-to-end flow-control
mechanisms in this three-tier hierarchical IoT architecture to
ensure timely data delivery with the minimal linger time for
the uncontrollable Mobile Sink. This is an AIMD approach
to the send rate adjustments as the congestion will have been
ongoing and pervasive by the first communication back to the
Collectors to reduce their send rates.

C. Retransmission Mechanism

IV. EVALUATION

This section describes our implementation and experimental
evaluation procedures.

A. Implementation

Contiki-NG is the latest version of a leading embedded
IoT-focused Operating System. Contiki provided one of the
first implementations of RPL in 2010, presently referred to as
”RPL-Classic”, providing baseline support for the new routing
system. The creation of their next-generation operating system,
Contiki-NG, a new implementation was created, ”RPL-Lite”,
with the decision to eschew features to minimize the state
within each node [19]. One feature partially implemented
by ”RPL-Classic”, allowing multiple RPL Instances, was
removed entirely from this newly refactored implementation.

We selected Contiki-NG for this work as a popular and
well-maintained OS with its core implementation for RPL,
however, many modifications were needed, even with ”RPL-
Classic”, in order to actualize support for ROIST. One of the
many updates needed was in the full support of RPL Instances
themselves. While allowing for the configuration of multiple
Instances, the implementation provided only references to a
single ”default instance”. This is also an area where the RFC
was expounded upon, as RPL does not specify any design
for operating multiple instances concurrently; only providing
design guidance for how a single instance would operate.

We modified Contiki-NG to incorporate sufficient resources
and code-hooks to allow for multiple, concurrent RPL In-
stances, and to support a device being a DAG root of one,
while a member of a second. This modification facilitated the
three-tier hierarchical support needed for ROIST. Furthermore,
the functions involved within the networking stack were
modified to support the passing of state from the incoming
packet, allowing proper forwarding of traffic along RPL in
accordance with the RPL Instance it was associated with. This
enabled multi-Instance intercommunication without routing
interference, in accordance with the modifications we had
made to the RPL protocol.

Current limitations with our Contiki-NG implementation
still remain with regards to the routing table size and with
the Storing Mode implementation that does not react well
to the change of parent events, persisting old descendants in
their downward routing tables. This occurs primarily in noisy
environments wherein the updating packet, the DAO, is not
properly received as multiple devices may change their own
parents, precluding the routing through all prior ancestors, or
by simple loss of the DAO.

B. Experimental Evaluation Setup

The experimental evaluation was performed on the Cooja
simulator. Cooja uses an MSP430 emulator to run the code
on each of the Zolertia Z1 devices used in the simulation.
For this work with ROIST, we elected one Mobile Sink,
which would arrive after 5 minutes of simulation time, to
allow the initial formation of the devices within RPL, and to
allow for sufficient, albeit greatly accelerated, data collection
to necessitate a full data buffer to transfer.

To provide a source of noise, we used the Logistic Loss
Radio Medium [20] to present a realistic loss model. Under
this model, the devices were procedurally deployed for each



test using {range|4 ≤ range ≤ 6}m maximum distance to
the neighboring device. This range was selected in conjunction
with the source of noise for the experiments.

To test under different levels of noise, we evaluated the α
parameter of the LogisticLoss model, ranging from 2.0 (higher
noise) to 4.0 (light noise) levels. For this validation, we set
α = 3.0, which corresponded to an average RSSI in the range
[−78.98,−84.29].

ROIST was evaluated under two Topologies for this valida-
tion: Linear and Mesh. Under each model, two Bridge roots
were placed within range of the location where a Mobile Sink
would arrive. Under the Linear topology, Collector devices
were split between the provided Bridge devices and their
positions were generated within range of the prior gener-
ated Collector for that Bridge. These deployments were all
generated along the same direction from the Bridge. Under
the Mesh topology, all Collector devices were deployed to a
random position within range of any existing device, placed
at a random heading from that device.

The objective of these validations was to assess ROIST
in a high-throughput environment. We set the data patterns
therefore to use 10 octet Block sizes, with one Block per
data packet. This produces smaller 6LoWPAN packets (55
octets) than the MTU can support, but it also provided an
increase in the scenario traffic when compared against the 128-
octet MTU possible. The initial Send Rate (λ) was set for 16
packet transmissions per second. This is also much higher than
would be used in a deployment, but provides higher congestion
incidences throughout the network for the validation.

All of the tests in the validation use the same node de-
ployment positions, which are procedurally generated at the
beginning of the set of tests, once per test topology. Each test
used a different, randomly generated seed. A sample of the
deployment positions is shown in Figure 4, with 2 Bridges
(yellow), 7 Collectors (red), and one Mobile Sink (green) in
the Cooja Test Environment.

Fig. 4: ROIST Evaluation Running in the Cooja Network Simulator

V. EXPERIMENTAL RESULTS

Each of the results are depicted in Figure 5. In these graphs,
No-CP indicates no Checkpointing, CP/NA indicates that
Checkpointing was Enabled, but the Autonomic Controller
was Disabled, while CP/A indicates both were activated.

The first validation set to establish a baseline for looking
at the overall Packet Delivery Ratio (PDR) and the Block
Delivery Ratio (BDR), which assesses the ultimate efficacy in

delivering the data to the Mobile sink. For this validation, we
assessed a baseline without any Checkpointing or autonomic
adjustments; this was a measure of the average packet delivery
success solely through the RPL routing. The results, shown
in Figure 5a showed an average PDR of 59.5% without any
end-to-end reliability mechanisms of ROIST for the 91 total
transmitted packets.

With the Checkpoint configuration enabled, albeit without
any autonomic adjustments to the parameters, the BDR in-
creased to 100% for each topological model, which is as
expected under the system of checkpointing and controlled
retransmissions to ensure data delivery. The PDR increased to
an average of 76.1% under a Linear topology and to 77.5%
under a Mesh topology.

Adding the autonomic adjustments to the Checkpointing, the
PDRs increased further, with an average of 81.6% for Linear
topology and 81.7% for the Mesh topology, as each required
fewer transmissions overall to achieve the 100% BDR. This
achieved the marked purpose of ROIST, which was reliability
in data delivery to the uncontrollable and unpredictable Mobile
sink under RPL.

The second validation studied how the various Checkpoint-
ing modes addressed the total transmissions needed in order
to achieve the 100% BDR objective. These results, shown in
Figure 5b, demonstrate that under Checkpointing without the
autonomic control we required the transmission of an average
of 133.7 and 133.8 packets under Linear and Mesh topologies
respectively. With the addition of autonomic adjustments these
each fell precipitously to an average of 118.6 and 119.0
packets under the same respective topologies.

The reduction in transmitted traffic is a key figure for
this validation as it shows the autonomic adjustment system
was able to adjust in response to the interference, noise, and
congestion in such a way as to increase the reliability of each
packet delivery. While this validation was short in duration,
only accounting for one set of block deliveries to the Mobile
sink under a limited deployment area, each of the devices
would nevertheless maintain their last settings, allowing for a
better starting point under the next data retrieval event.

The final assessment was on the Linger time of the Mobile
sink. This is a measure of the duration required from first trans-
mission to the last block acknowledged by the last Collector.
The average Linger time without autonomic adjustments, as
shown in Figure 5c was 214.78 sec for the Linear topology,
and 273.59 sec for the Mesh topology.

When autonomic adjustments were enabled, the Linger time
did increase slightly to 258.72 sec under the Linear topology,
and to 311.62 sec under the Mesh topology. While the total
number of packets was reduced, there were nevertheless delays
resulting from the additional end-to-end communications to
make these flow-control adjustments, increasing the Linger
time under such a small deployment validation.

These validation experiments could not be compared against
a baseline RPL implementation. For the reasons specified in
III, the formation of such a hierarchical network is not directly
possible.



0.00

20.00

40.00

60.00

80.00

100.00

120.00

No-CP
Enabled

Linear -
CP/NA

Linear -
CP/A

Mesh -
CP/NA

Mesh -
CP/A

Delivery Ratios by Topology and 
Checkpointing Modes

PDR

BDR

(a) Packet and Block Delivery Ratios

110.00

115.00

120.00

125.00

130.00

135.00

Linear Mesh

Av
er

ag
e 

Pa
ck

et
 T

ra
ns

m
iss

io
ns

Packet Transmissions by Topology and 
Checkpointing Modes

CP/NA

CP/A

(b) Total Packet Transmissions

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Linear Mesh

Av
er

ag
e 

Li
ng

er
 T

im
e 

in
 S

ec
on

ds

Linger Time by Topology and 
Checkpointing Modes

CP/NA

CP/A

(c) Linger Time

Fig. 5: ROIST Validation Results

VI. CONCLUSION

ROIST provides reliability in data transmissions for LLN
based IoT deployments through the use of end-to-end com-
munications and Checkpointing. This is facilitated through
reasonable extensions to the standard RPL routing protocol,
which were limited to providing definitions for the underspec-
ified operations of multiple concurrent RPL Instances.

Using these necessary extensions, ROIST supports simul-
taneous multiple convergecast tree instances arising from un-
predictable mobile sink patterns, introduces a novel congestion
control mechanism and automatically adapt to changing and
unpredictable wireless transmission conditions, as demon-
strated through our Contiki-NG implementation and validated
experimentally using the COOJA simulator. Our results show
that ROIST achieves high levels of reliable data delivery to

mobile sinks while minimizing congestion and adapting to
wireless transmission losses.

REFERENCES

[1] Y.-D. Yao, X. Li, Y.-P. Cui, J.-J. Wang, and C. Wang, “Energy-efficient
routing protocol based on multi-threshold segmentation in wireless
sensors networks for precision agriculture,” IEEE Sensors Journal,
vol. 22, no. 7, pp. 6216–6231, 2022.

[2] S. Singh, A. S. Nandan, A. Malik, N. Kumar, and A. Barnawi, “An
energy-efficient modified metaheuristic inspired algorithm for disaster
management system using wsns,” IEEE Sensors Journal, vol. 21, no. 13,
pp. 15 398–15 408, 2021.

[3] K. Ghosh, S. Neogy, P. K. Das, and M. Mehta, “Intrusion detection at
international borders and large military barracks with multi-sink wire-
less sensor networks: An energy efficient solution,” Wireless Personal
Communications, vol. 98, no. 1, pp. 1083–1101, 2018.

[4] A. Oliveira and T. Vazao, “Low-power and lossy networks under
mobility: A survey,” Computer networks, vol. 107, pp. 339–352, 2016.

[5] H. Lamaazi and N. Benamar, “A comprehensive survey on enhancements
and limitations of the rpl protocol: A focus on the objective function,”
Ad Hoc Networks, vol. 96, p. 102001, 2020.

[6] Y. Tahir, S. Yang, and J. McCann, “Brpl: Backpressure rpl for high-
throughput and mobile iots,” IEEE Transactions on Mobile Computing,
vol. 17, no. 1, pp. 29–43, 2018.

[7] H. Kim, H.-S. Kim, and S. Bahk, “Mobirpl: Adaptive, robust, and rssi-
based mobile routing in low power and lossy networks,” Journal of
Communications and Networks, 2022.

[8] M. Bouaziz, A. Rachedi, A. Belghith, M. Berbineau, and S. Al-Ahmadi,
“Ema-rpl: Energy and mobility aware routing for the internet of mobile
things,” Future Generation Computer Systems, vol. 97, pp. 247–258,
2019.

[9] M. Bouaziz, A. Rachedi, and A. Belghith, “Ekf-mrpl: Advanced mo-
bility support routing protocol for internet of mobile things: Movement
prediction approach,” Future Generation Computer Systems, vol. 93, pp.
822–832, 2019.

[10] B. Safaei, A. Mohammadsalehi, K. T. Khoosani, S. Zarbaf, A. M. H.
Monazzah, F. Samie, L. Bauer, J. Henkel, and A. Ejlali, “Impacts of
mobility models on rpl-based mobile iot infrastructures: An evaluative
comparison and survey,” IEEE access, vol. 8, pp. 167 779–167 829,
2020.

[11] H. Luo, F. Ye, J. Cheng, S. Lu, and L. Zhang, “Ttdd: Two-tier data
dissemination in large-scale sensor networks,” ACM MONET (Mobile
Networks and Applications), pp. 85–89, 2003.

[12] A. Hawbani, X. Wang, H. Kuhlani, S. Karmoshi, R. Ghoul, Y. Sharabi,
and E. Torbosh, “Sink-oriented tree based data dissemination protocol
for mobile sinks wireless sensor networks,” Wireless Networks, vol. 24,
no. 7, pp. 2723–2734, 2018.

[13] O. Busaileh, A. Hawbani, X. Wang, P. Liu, L. Zhao, and A. Y. Al-Dubai,
“Tuft: Tree based heuristic data dissemination for mobile sink wireless
sensor networks,” IEEE Transactions on Mobile Computing, 2020.

[14] K. Andrea and R. Simon, “Design and evaluation of an RPL-based multi-
sink routing protocol for low-power and lossy networks,” in MSWiM
2015 - Proceedings of the 18th ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems,
2015.

[15] C. Lim, “A Survey on Congestion Control for RPL-Based Wireless
Sensor Networks,” Sensors, vol. 19, no. 11, 2019. [Online]. Available:
https://www.mdpi.com/1424-8220/19/11/2567

[16] O. Iova, F. Theoleyre, and T. Noel, “Exploiting multiple parents in rpl
to improve both the network lifetime and its stability,” in 2015 IEEE
International Conference on Communications (ICC), 2015, pp. 610–616.

[17] M. A. Lodhi, A. Rehman, M. M. Khan, and F. B. Hussain, “Multiple path
rpl for low power lossy networks,” in 2015 IEEE Asia Pacific Conference
on Wireless and Mobile (APWiMob), 2015, pp. 279–284.

[18] A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,
and R. Alexander, “RPL: IPv6 Routing Protocol for Low-Power
and Lossy Networks,” Tech. Rep., mar 2012. [Online]. Available:
https://www.rfc-editor.org/info/rfc6550

[19] G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka, and
N. Tsiftes, “The Contiki-NG open source operating system for next
generation IoT devices,” SoftwareX, vol. 18, p. 101089, 2022.

[20] A. Elsts. (2022) Logistic loss radio medium. [Online]. Available:
https://github.com/atiselsts/cooja/wiki/LogisticLoss-radio-medium


