
CS 100: Practice on Python Drawing

Chris Kauffman

Week 4

Mini-Exam 1 Back: Results are very good

Summary Stats

Stat Raw %
Count 43 -
Max 39.00 97.50
Average 35.26 88.15
Median 36.00 90.00
Stddev 3.24 8.10

Percentage Frequencies

Range Count
90 - 100 24
80 - 89 15
70 - 79 2
60 - 69 2
50 - 59 0

Logistics

Homework 3
I Due next Thursday
I Can work with partner
I Submit both Word

Doc/PDF AND Python code

Reading
How to Think Like a Computer
Scientist Ch 3-7

Mini-Exam
Will return and discuss on
Thursday

Goals Today

I Python basics
I Drawing Exercises

Quick Review

I Where can you find example code we work on in class?
I What will appear at the top of python files which use the

turtle to draw?
I Describe 3 primitive movement operations the turtle knows?
I How does one change the color of the turtle?
I How does one get the turtle to fill in shapes with color?
I How does one stop and start the turtle from drawing while it

moves?

Staying Organized

I HW and python files
I Single Desktop/cs100/hw3 directory

I Homework 3.doc (written HW)
I hw3.py which contains code for the HW

I When HW 4 rolls around, make Desktop/cs100/hw4
I Homework 4.doc (written HW)
I hw4.py for code

I When working in class, create a file for the days work
I classwork_9_16.py (spaces screw things up)

Exercise: Draw a plain house

Basic commands

forward(length)
right(angle)
left(angle)

Repetition

for i in range(4):
forward(100)
right(90)

backward(200)

Spaces to indent loops

Spaces in Python

Spaces between things doen’t matter too much

x = 1 # Assign x to be 1
x=2 # Assign x to be 2
x = 3 # Assign x to be 3

for i in range(4): # Repeat 4 times
print(i)

for i in range(4): # Repeat 4 times
print(i)

Spaces in Python
Spaces in front of things matter a lot

x = 1 # Assign x to be 1
y=2 # Error!

if (x > 2): # Indent things that should
print("x > 2") # be done if x > 2
print(x)

else: # Indent things to do
print("x <= 2") # when x <= 2
if(x == 2): # Check if x is 2

print("x is 2") # Print if it is
print("All done") # ALWAYS do this

for i in range(4):
print(i) # Do this 4 times

print("hi") # Do this once

Color Names as Strings

from turtle import *
color(x,x) # what is x?
color(blue,blue) # what is blue?
color("blue","blue") # I know the "word" blue!

Bare names like

blue red

are treated as variables, often undefined
Things in quotes like

"blue" "red" "Several colors at once"

are string literals: "wordy" data

Exercise: Colored House

Add color("something")
commands

from turtle import *

for i in range(4):
forward(200)
right(90)

left(60)
for i in range(3):

forward(200)
right(120)

Filling Areas with Color

New Commands
begin_fill() and end_fill()
can create shapes filled with
color.

I Call begin_fill() to start
coloring

I Looks like nothing happens
I When end_fill() is called,

will fill in an area

Try the Following Code

color("green")
begin_fill()
for i in range(5):

forward(100)
right(72)

end_fill()

Can do this directly in interactive
loop or in a file

Exercise: The Pretty House

Add begin_fill() and
end_fill() to your code to
produce the pretty house at the
right

Pen goes up, Pen goes down

I penup() stops drawing lines,
allows turtle to move
without drawing

I pendown() starts drawing
lines again

I Useful for dashes and for
face.py

for i in range(10):
forward(10)
penup()
forward(10)
pendown()

right(120)
for i in range(10):

forward(10)
penup()
forward(10)
pendown()

Exercise: Two Houses
Single House

Draw the body of the house
color("blue")
begin_fill()
for i in range(4):

forward(200)
right(90)

end_fill()

Draw the roof of the house
color("red")
begin_fill()
right(300)
for i in range(3):

forward(200)
right(120)

end_fill()

Now penup(), change angle, move,
pendown() and do it again

Variables

I A name like size associated
with a value

I Can change the value
associated with the name
with assignment

size is 100
size = 100
change size to 200
size = 200
value of i is 3
i = 3
change size to 300
size = i * 100

Little square
size = 100
for i in range(4):

forward(size)
right(90)

Big square
size = 200
for i in range(4):

forward(size)
right(90)

Exercise: The Suburbs

I Smaller houses - size 100
sides

I Use a variable size = 100
I Change forward(200) to

forward(size)
I Use a for loop to repeatedly

draw houses and move turtle

Loop Variables Change Each iteration

The range(N) statement
produces a sequence of numbers
from 0 to N; good for loops

prints 0, 1, 2, 3
for i in range(4):

print(i)

Square spiral
size = 0
for i in range(15):

size = (i+1) * 25
forward(size)
right(90)

Exercise: Suburbs part 2

I Change size each loop
iteration

I Remember that loop
variables start at 0

Template for Suburbs

size = 50
for i in range(4):

draw a house size big

penup() and move turtle

pendown()

make size 50 pixels bigger

Functions in Python

Functions are Recipes
Define how to do something, an
algorithm, but don’t do it yet

Syntax

I The def keyword for define
I Parentheses () for

parameters
I The colon :
I Indentation of commands

belonging to the function

Draw a square size 100
No parameters
def draw_square_100():

for i in range(4):
forward(100)
right(90)

End of square_100() function

Draw a square with given
size which is a parameter
def draw_square(size):

for i in range(4):
forward(size)
right(90)

End of square(size) function

Writing a Recipe versus Cooking

How to draw a square with given
size which is a parameter
def draw_square(size):

for i in range(4):
forward(size)
right(90)

End of square(size) function

Not indented so not part of function
Like the "When Run" block in code.org
draw_square(100) # draw square size 100
penup()
forward(200) # move
pendown()
draw_square(200) # draw square size 200

I Functions define how to
do something new

I Won’t do it until function
is called or executed

I Code to left defines
function
draw_square(size)

I Calls that function twice
I Makes two different

rectangles

Exercise: Fancy Diamond

I Write a python function
fancy_diamond() which
draws a fancy diamond

I Tilt is 45 degrees
I Sides are 100 pixels long
I May want to use

draw_square(size) as a
fancy diamond is comprised
of 4 squares

def draw_square(size):
for i in range(4):

forward(size)
right(90)

Function Gotchyas

Define but forgot to call
Won’t draw anything

def draw_square(size):
for i in range(4):

forward(size)
right(90)

Will draw something

def draw_square(size):
for i in range(4):

forward(size)
right(90)

draw_square(200)

Define before Use
Error

draw_square(200)
def draw_square(size):

for i in range(4):
forward(size)
right(90)

Okay

def draw_square(size):
for i in range(4):

forward(size)
right(90)

draw_square(200)

Multiple Arguments

I Functions can take multiple
arguments such as size and
color

I Each parameter is in
between parenthesis
separated by commas

Draw a square with given size
and color
def draw_color_square(size,col):

color(col)
begin_fill()
for i in range(4):

forward(size)
right(90)

end_fill()

draw_color_square(25,"red")
forward(25)
draw_color_square(75,"green")
forward(75)
draw_color_square(125,"blue")

Exercise: Draw House Function

Create the function
draw_house(size,bodycol,roofcol):

I Draws house of given size
I Color body bodycol and roof

roofcol
I Bonus: Use

draw_color_square(size,col)
I Bonus: Create

draw_color_triangle(size,col)
and use it to draw house

size = 100

Draw the body of the house
color("blue")
begin_fill()
for i in range(4):

forward(size)
right(90)

end_fill()

Draw the roof of the house
color("red")
begin_fill()
left(60)
for i in range(3):

forward(size)
right(120)

end_fill()

Draw House Solution
Straight Code

def draw_house(size,bodycol,roofcol):
Draw the body of the house
color(bodycol)
begin_fill()
for i in range(4):

forward(size)
right(90)

end_fill()

Draw the roof of the house
color(roofcol)
begin_fill()
left(60)
for i in range(3):

forward(size)
right(120)

end_fill()

Using Other Functions

def draw_color_square(size,col):
color(col)
begin_fill()
for i in range(4):

forward(size)
right(90)

end_fill()

def draw_color_triangle(size,col):
color(col)
begin_fill()
for i in range(3):

forward(size)
right(120)

end_fill()

def draw_house(size,bodycol,roofcol):
draw_color_square(size,bodycol)
left(60)
draw_color_triangle(size,roofcol)

Suburbs Part 3

Use the
draw_house(size,bodycol,roofcol):
function to simplify drawing the
suburbs.

Template for Suburbs

size = 50
for i in range(4):

draw a house size big

penup() and move turtle

pendown()

make size 50 pixels bigger

Python Conditionals

myVar = 7 # Assign a variable
if(myVar == 5): # Check something

print("It’s five");
else:

print("It’s not five");

for i in range(10):
if i == 7:

print("Lucky!")
else:

print("Boring")

I Using == allows one to check whether a variable is equal to a
number

I An if/else statement allows conditional execution

Exercise: Keeping up with The Kardashians

I Modify code below to
produce the Kardashians
neighborhood

I The Kardashians have a
bigger house (200 pixels)
with different coloring. . .

I Use an if/else statement

for house in range(4):
draw_house(100,"blue","red")

Adjust position
penup()
right(60)
forward(250)
pendown()

Alternating with Conditionals in Loops

Print whether the numbers are odd or even
for i in range(10):

if(i % 2 == 0): # % is remainder op
print(str(i) + " is Even")

else:
print(str(i) + " is Odd")

I Useful when you want to alternate drawing different colors
I Nesting and combining things is what makes programming

interesting

The Alternating Neighborhood

Use remainder operator % and
if/else to draw the alternating
neighborhood which is crowded
with Kardashians

