
CS 100: Python Lists and Function Return Values

Chris Kauffman

Week 6-1

Logistics

Reading

I Pattern Ch 5: Algorithms And Heuristics
I Think Ch 11: Lists (link)

Homework 4
Due next week

Mini-Exam 2 Today

Goals Today

I Python lists
I Returning things from Functions

http://openbookproject.net/thinkcs/python/english3e/lists.html

Questions on Computability

I Is how can one determine whether a computer program
finishes?

I Can one program determine if another computer program will
terminate?

I How does a human stop a program from running?

Exercise: Review of Lists

Write some python code which will accomplish the following
I Create a list named the_nums with the numbers 2, 4, 8, 16
I Create a list named the_names with the strings Frank,

Claire, and Doug in it
I Change the number at index 2 of the_nums to be 32
I Print only the number at index 1 of the_names
I Print both lists to the screen
I Print the length of both lists
I Loop through the list the_nums and print each item in it

Exercise: Average of Numbers

I Adapt the code for max_number(L) to find the average of the
numbers in a list

I Call your function list_average(L)
I Remember: Exercise answers are usually distributed with the

lecture slides
I Follow the pattern demonstrated in max_number(L) but will

need to change some details
Find the maximum number and print it
def max_number(L):

max = -1
for number in L:

if number > max:
max = number

print("The max is "+str(max))

List Average Answer

def list_average(L): # Print the average of a list
total = 0
for num in L:

total = total + num
avg = total / len(L)
print("Average is "+str(avg))

Problem: Printing doesn’t cut it
Suppose we want to compare the average scores of two classes in
code?

scores_sec1 = [13,20,35,32,40]
scores_sec2 = [40,25,37,13,21,23,18]

if ?? :
print("Sec 1 has a better average")

else:
print("Sec 2 has a better average")

Solution: Don’t print, return answer
Within a function, the return statement allows an answer to be
given back to whoever executed the function.

def list_average(L): # Compute and return average of list
total = 0
for num in L:

total = total + num
avg = total / len(L)
return avg # return an answer: the average
print("Average is "+str(avg)) # Don’t print

scores_sec1 = [13,20,35,32,40]
scores_sec2 = [40,25,37,13,21,23,18]

avg_sec1 = list_average(scores_sec1) # store the average of sec1
avg_sec2 = list_average(scores_sec2) # store the average of sec2

if ?? : # Fill the question marks in
print("Sec 1 has a better average")

else:
print("Sec 2 has a better average")

Drawing vs "Normal" Functions

Drawing Functions

I Mostly put things on the
screen

I Almost never return stuff

draw_house(100,"red","blue")
pen_up()
forward(200)
pen_down()
draw_house(200,"green","yellow")

"Normal" Functions
I Mostly don’t put stuff on the

screen
I No printing
I No moving turtles

I Frequently return an answer

avg1 = list_average(scores1)
avg2 = list_average(scores2)
report_averages(avg1,avg2) # prints
all_scores = merge_lists(scores1,scores2)
max_score = max_number(all_scores)
report_max(max_score) # prints

Visualize!
As programs get more complex, seeing how they work gets more
difficult: more state is hidden
The Python Visualizer is a useful web site to help.

List Average on Visualizer: https://goo.gl/9MW54s

http://www.pythontutor.com/
https://goo.gl/9MW54s

Exercise: Convert to Return

Find the maximum number and print it
def max_number(L):

max = -1
for number in L:

if number > max:
max = number

print("The max is "+str(max))

Exercise: Exponentiate

def exponentiate(base,exponent):

I Raise base to a given power
I Involves a loop and repeated multiplication
I Assume both numbers are integers (no fractions)
I Raising numbers to the zeroth power always gives 1

Examples

twoTofour = exponentiate(2,4) # 16
threeToFive = exponentiate(3,5) # 243
eightTozero = exponentiate(8,0) # 1
nineTothird = exponentiate(9,3) # 729

Solution: Exponentiate

A function to raise base to the exponent power
def exponentiate(base,exponent):

ans = 1
for i in range(exponent):

ans = ans * base
return ans

Example: Binary to Decimal Conversion
Recall Conversion of binary
numbers

110110_2 = 0*1 + 1*2 + 1*4 +
0*8 + 1*16 + 1*32

= 54

Python lists with 1’s / 0’s

bin1 = [1,1,0,1,1,0]

Convert binary list to
decimal number
def bin_to_dec(binaryL):

???

dec1 = bin_to_dec(bin1)
print(dec1) # 54

Function bin_to_dec(binL)

I Converts binary list to
decimal number

I Uses exponentiate(2,pow)
I Loops through the list
I Must adjust pow for position

in list

Strategies

Strategy: Front to Back

bin1 = [1,1,0,1,1,0]
2^5 +2^4 + 2^2 + 2^1

I Go from front to back

I range(len(BinaryL))

I Power decreases by 1
each iteration

Strategy: Back to Front

bin1 = [1,1,0,1,1,0]
2^1 + 2^2 + 2^4 + 2^5

I Go from back to front

I range(len(binaryL)-1,-1,-1)

I Power increase by 1 each iteration

Implementations
Strategy: Front to Back

def binary_to_decimal_backwards(binaryL):
sum = 0
pow = 0
for i in range(len(binaryL)-1,-1,-1):

if binaryL[i]==1:
sum = sum + exponentiate(2,pow)

pow = pow+1
return sum

Strategy: Back to Front

def binary_to_decimal_forwards(binaryL):
sum = 0
pow = len(binaryL)
for i in range(len(binaryL)):

pow = pow-1
if binaryL[i]==1:

sum = sum + exponentiate(2,pow)
return sum

Creating New Lists

Create a new empty list and fill it up with numbers

my_list = []
for i in range(10):

my_list.append(i)
print(my_list)

for i in range(10,-1,-1):
my_list.append(i)

print(my_list)

Lists can append(x) things to their end

Exercise: Create a Reversed List

def reverse_list(L):

Create a reversed copy of L

I Start with an empty list
I Use a for loop from back to

front of L
I Append each element of L

to the reversed list
rev.append(L[i])

I Return the reversed list

Examples

for1 = [1,2,3,4]
rev1 = list_reverse(for1)
[4,3,2,1]

for2 = [1,1,0,1,1,0]
rev2 = list_reverse(for2)
[0,1,1,0,1,1]

Solution: Create a Reversed List

Create and return a reversed list with the
append method of lists
def list_reverse(L):

rev = []
for i in range(len(L)-1,-1,-1):

rev.append(L[i])
return rev

Exercise: Converting from Decimal to Binary

Recall the process to convert a
decimal number to a binary
number

54÷ 2 = 27 rem 0
27÷ 2 = 13 rem 1
13÷ 2 = 6 rem 1
6÷ 2 = 3 rem 0
3÷ 2 = 1 rem 1
1÷ 2 = 0 rem 1

5410 = 1101102

def dec_to_bin(decimal):

I Convert the decimal number to
a binary list

I Use repeated integer division:
quot = num // divis

I And repeated remainder:
rem = num % divs

I Append remainder to a list

I Reverse list and return

dec1 = 54
bin1 = dec_to_bin(dec1)
[1, 1, 0, 1, 1, 0]
dec2 = 87
bin2 = dec_to_bin(87)
[1, 0, 1, 0, 1, 1, 1]

Exercise: Converting from Decimal to Binary

Convert a decimal number to a binary list
def dec_to_bin(decimal):

digits = []
while decimal > 0:

remainder = decimal % 2
decimal = decimal // 2
digits.append(remainder)

digits_rev = list_reverse(digits)
return digits_rev

HW 4

I Only 3 problems
I Problems 1 and 2: Write a word-list processing functions
I Problem 3: Use code I provide and your functions to rank web

pages, compare to Google search results
I May want to do some research on how web search engines

rank web pages
I Zyante: Section 5.7 has some information, may want to look

elsewhere also for info
I More discussion on Internet and Search later in the class

HW Relevant Exercise: Counting Odd Numbers

def count_odds(alist):
???

how_many_odds = count_odds([1,2])
print(how_many_odds) # 1

how_many_odds = count_odds([8,6,7,5,3,0,9])
print(how_many_odds) # 4

Sub-problems: How to. . .
I Examine each element in a list?
I Check if a number is odd?
I Update a total?
I Return an answer from a function?

HW Relevant Exercise: Find all Odd Numbers

def get_all_odds(num_list):
??

print(get_all_odds([2,4,6])) # []
print(get_all_odds([1,2,5])) # [1, 5]
print(get_all_odds([3,3,2,2,1,3])) # [3, 3, 1, 3]
odd_list = get_all_odds([3,3,2,2,1,3])
print(odd_list)
[3, 3, 1, 3]

Basic structure
I Create an empty answer list
I Examine each element in num_list
I If number is odd, append to answer

answer.append(number)
I Return the answer list

