CS 100: Simulation and Randomness

Chris Kauffman

Week 12-1

Logistics

HW6 Up Soon

- Last of the Semester
- Security Upgrades
- AI and Automation questions

Reading:

- Pattern on the Stone Ch 8 Machines that Learn
- Article: A Plan for Spam

End Game

Week 12	Tue 4/18 Thu 4/20	Simulation Machine Learning
Week 13	Tue 4/25	Machine Learning
	Thu 4/27	Automation Mini-Exam 4
Week 14	Tue 5/2	Intellectual Property
	Thu 5/4	Review HW 6 Due
Week 15	Thu 5/11	Final Exam

Quick Review of Parallel Computing

1. True or False: The number of transistors in modern computers is increasing. (If so, by how much)
2. True or False: Modern computers continue to increase in speed dramatically.
3. True or False: With 5 computers, one can always get a program to finish in $1 / 5$ th the time
4. If False: why? What is the slow down?
5. What is a histogram?

Simulations

- An important application of computation
- One of its earliest uses: artillery firing tables
- Lots of modern incarnations, many of which use parallel computation
- We will explore a few today

Schilling's Segregation Model

- Play with it here: http://www.avanderw.co.za/
schellings-segregation-simulation/
- White is empty space
- City people are little red/blue squares, different "classes"
- People want to have neighbors w/ same class
- Tolerance threshold for like to not-like neighbors
- Too few like neighbors, move to a random empty location

Like	1
Unlike	5
Total	6
Ratio Like	$1 / 6$
Percentage	16.6%
Threshold	30%
Result	Move

Like	3
Unlike	4
Total	7
Ratio Like	$3 / 7$
Percentage	42.9%
Threshold	30%
Result	Stay

For Fun Disease Model

- Play with http://mattbierbaum.github.io/zombies-usa/
- Read about what is in the model here: http://arxiv.org/abs/1503.01104
- Consider what's good and bad about the model

Figure out

- What is the parameter α described as the "kill to bite ratio"
- What can one learn by playing with the model?

Other Models

All models are wrong, but some are useful.

- George Box, Statistician

What other computer simulations affect your life?

- List at least 2
- What do you think is involved with the codes there?
- Could you run that code on your laptop?

Examples

Weather Prediction

Source: Wikip Numerical Weather Prediction

Auto Safety During Crashes

Source: Wikip Crash Simulation

Any volunteers to replace the simulated dummy?

Siri: Will it rain this afternoon?

More Examples

Wireless Network Simulation

Source: Higashino Lab

Protein Structure Prediction

Source: Fold.it
Puzzle game that simulations biology, protein folding, disease and drug development research.

Can you hear me now?

Randomness

Chance Events

- Segregation: location to move to is random
- Chance events are good for games too

Source: Alan's BlackJack Page

Google Me This

- Are computers random at all?
- How does a computer produce randomn numbers or random bits?
- Are they really random numbers?

Pseudo-Random

A classic random number generator from The C Programming Language by Kernighan and Ritchie
/* Tracks state of random number generator */ unsigned long int next = 1;
/* rand: return pseudo-random integer on 0..32767 */ int rand() \{ next $=$ next * $1103515245+12345$; return (unsigned int) (next/65536) \% 32768; \}
/* srand: set seed for rand() */ void srand(unsigned int seed) \{
next = seed;
\}
Is there anything random about it?

Example Program

Random Draws

/* Draw 10 cards from a deck of 52 cards with replacement */
int main()\{
srand(12345);
int i;
for (i=0; i<20; i++) \{
int myrand $=\operatorname{rand}() \% 52$;
printf("\%2d ",myrand);
\}
printf(" n ") ;
\}
Always produces the sequence


```
12}4343427[3124 25 28 33 8,
```


Code Explained

- rand() produces a positive number
- Range 0 to 32767
- Limit to 0 to 51 by dividing by 52 and taking remainder

Random Numbers

- Pseudo-random sequences are deterministic: always produce the same sequence if you start in the same spot
- If you want a different sequence, start somewhere different
- Most common trick: use the time of day to seed the random sequence
- Since time changes all the time (smirk) will get you different looking random sequences

Rate Anything!

- You're Running a Business Online
- Free web service
- RateAnything.com (currently available for purchase)
- Users can submit a person, place, or thing and start rating and feedback
- To make money: sell ads
- How do you choose what ads to sell?

- Chris Kauffman

Professor in the Computer Science department at George Mason University, Fairfax, VA
ARE YOU CHRIS KAUFFMAN?

Rate this Professor Share

SUbmit a correction | Learn how ratings work
ovirall quality average grade hotmiss

$$
\begin{aligned}
& \text { HID } \\
& 4.0
\end{aligned}
$$

Data Associations

Rating A Person
CS Professor Ads for programming books
Politician Political ads
Dentist Ads for Toothpaste, electric toothbrush

Rating a Place
Vacation Hotel Ads for local tour, restaurant
Restaurant Ads for other restaurants, coupon books

Rating a Thing
Frying Pan Ads for tongs, spatula, new oven
New Car Ads for insurance, car wash

Getting Paid

- You get paid by advertisers every time people click on your ads
- Want people to click as much as possible
- Try to make ads relevant to
- Object being rated
- User interests
- Any idea how do do this with a computer?

Machine Learning Can Help

- Algorithms that can learn patterns
- This object relates to this ad
- This user is interested in this stuff
- Requires information in a machine friendly form
- List of words in rated object description
- List of objects user has viewed
- List of ads user has clicked on, which they have ignored
- Most machine learning requires training
- Explicitly label "this object is like this object", "this ad should be served for this object", "the user clicked on this ad and ignored this ad"
- Can learn the patterns so that a new ad can be associated to new rated objects
- Chapter 8 of The Pattern on the Stone discusses some machine learning, more next time

