
Architecture and Parallel Computers

Chris Kauffman

CS 499: Spring 2016 GMU

Logistics

Reading: Grama Ch 2

I Focus on 2.3-5, material pertaining to distributed memory
I We will return to shared memory arch later in the course
I Cache Coherence, PRAM models, False Sharing, Memory Bus

are all shared memory topics
I Sections 2.1 and 2.2 optional, deeper architectures
I Sections 2.6 and 2.7 encouraged, deeper on networks

Assignment 1

I Will post over the weekend
I 8-day turn around
I Mostly written assignment
I Feelings on group work?

The Dining "Swansons" (Philosopher)

I Whole model is premised on
limited use: eventually a
Swanson with 2 forks will
give them up and wait a
while before trying to
reacquire

I Several Solutions Exist to
avoid deadlock

Dijkstra
Number forks, everyone tries to
get lower number first Source: Aditya Y. Bhargava,

Originally: Dustin D’Arnault

http://adit.io/posts/2013-05-11-The-Dining-Philosophers-Problem-With-Ron-Swanson.html
http://www.inprnt.com/gallery/djdarnault/ron-swanson/

Dining Philosophers: Other Solutions

Waiter Mutex
Obtain "permission" (lock) to
pick up forks. Only Swanson can
pick up forks at a time. Attempt
to pick up both. On failure,
relinquish lock. (Locks: After
Spring Break)

Chandy/Misra
Requires communication between
Swansons. "I want your fork."
"No. It’s clean and I’m using it."
"Fine, I’ll wait." "I’m done it’s
dirty but I wiped it off for you."
"Thank you." "I want your fork
too." "Mine’s already dirty but
I’ll clean it and it’s yours."

Source: Aditya Y. Bhargava,
Originally: Dustin D’Arnault

http://adit.io/posts/2013-05-11-The-Dining-Philosophers-Problem-With-Ron-Swanson.html
http://www.inprnt.com/gallery/djdarnault/ron-swanson/

SISD, SIMD, MIMD, SPAM, and other 4-letter words

I Traditional CPU, Single Instruction Single Data (SISD)
ADD r1, r2 # add int in r2 to r1

I Most computers now have cpu instructions to add multiple
PHADD mm1, mm2 # add two ints in mm2 to ints in mm1

I Low level parallelism good for multimedia
stuff/graphics/games

I Flynn’s taxonomy discusses several variants
SISD SIMD SPMD
MISD MIMD MPMD

I Some parallel programs exist as Multiple Program Mulitple
Data (MPMD) like client server models

I Our focus and the most common type of parallel program:
Single Program Multiple Data (SPMD): Write one program
which processes different hunks of data in parallel

Recall: Distributed vs Shared Memory
Distributed Memory

Source: Kaminsky/Parallel Java

I Far more scalable/cost
effective

I Sharing information requires
explicit send/receive
commands between
processors

I Communication requires
more care/more expensive

Shared Memory

Source: Kaminsky/Parallel Java

I Convenience: no explicit
send/receive, write shared
memory address

I Requires coordination to
prevent corrupting memory

I Communication cost is low
but requires discipline

https://www.cs.rit.edu/~ark/lectures/pj04/notes.shtml
https://www.cs.rit.edu/~ark/lectures/pj04/notes.shtml

Modeling Distributed Memory Parallel Computers

I Will spend a some time discussing networks used in parallel
computing

I These have consequences for algorithms, but unless you’re
building your own machine (for like $1M) you’re stuck with
what you get

Static Networks for Distributed Machines
I String up a bunch of processing elements (PEs)
I Which PE is connected to which other?
I This can affect the cost of communication

Communication Costs
When sending a message of size m words of memory

I ts : Startup time, incurred once
I th: Per-hop time, overhead incurred for each link between

source and destination
I tw : Per-word transfer time between two nodes, takes tw ×M

time for each link between source and destination
I L: number of links to traverse
I M: number of words being sent
I Typical model for communication time w/ packet routing

tcomm = ts + Lth + twM

Grid and Torus

I Common arrangement of links between PEs
I Each PE node connected to neighbors
I When wrapping around, grid becomes a torus
I For a 2D torus with p nodes, how many links are required?
I Hint: surprisingly simple, think of each processor "owning"

down and right links
I How many links in a 3D torus?

HyperCube

I n-dimension
hypercube: connect
two (n− 1) dimension
hypercubes, link
corresponding nodes

I How many nodes and
links in an
n-dimension
hypercube?

I Hint: Nodes are easy,
links are tricky, try
your textbook. . .

Compare Networks: Parallel Stencil
I p processors
I log2(p)-dimension Hypercube: (p log2(p)/2) links
I 2D-torus: 2p links
I Discuss advantages/disadvantages of torus vs hypercube

arrangement for this application
I Outline an algorithm, estimate cost-effectiveness

Image "blurring"

I A large image is distributed
across the p processors

I Each proc holds a 2D hunk
of the image

I To blur the entire image,
must assign RGB values
which are average of
"neighborhood"

Stencil

Compare Networks: Parallel Sum
I p processors
I log2(p)-dimension Hypercube: (p log2(p)/2) links
I 2D-torus: 2p links
I Discuss advantages/disadvantages of torus vs hypercube

arrangement for this application
I Outline an algorithm, estimate cost-effectiveness

Sum Array of Numbers

I Each proc holds a hunk of
the data array

I Want a single processor to
eventually contain sum o

I State your algorithm: Try to
minimize communication at
each step, exploit as much
parallelism as possible

Networks

Some details on Parallel Sum

I We will talk more about parallel sum later
I Parallel sum is an example of a reduction
I For those curious, have a look at Lecture notes by Susan Hayes

http://emunix.emich.edu/~haynes/612/fa09/Lectures/parallelSum.html

Characteristics of Various Networks

Several metrics described in textbook
I Diameter: how many hops away any two procs can be
I Bisection width: number of links to break to partition network
I Arc Connectivity: number of paths between two nodes
I Cost: can correspond to number of links

Dynamic Networks

I In a static network,
connections are fixed

I Dynamic networks use
switches: send data into
network with destination,
may alter a connection to
point in a different direction

I Akin to the internet: packet
switching network

I Textbook mixes concepts
somewhat: Network for

I Distributed PEs to
communicate

I PEs to share memory

CrossBar and Omega Network

Tree

I Frequently used: Fat tree
I Fairly cost effective: Why?
I What drawbacks might it have?

Routing: Store/Forward Packet, Switching, Cut-Through
I When sending messages, intermediate nodes must decide what

to do with a message: Routing protocol/scheme

Store and Forward
I Accumulate the whole message (all M words), store it until it

can be forwarded to next hop
I Easy to build but requires large-ish internal buffers and

generally has bad performance

Standard Packet Switching

I Break message into chunks (packets)
I Use packet header to carry error-correction info, routing info
I Optimized for the unreliable internet (go around

overloaded/dead nodes)
I Better but incurs overhead to solve problems that aren’t

present in most parallel machines

Cut-through Routing/Switching

I Optimized for reliable network
I Determine source-to-destination route once with a tracer
I Every subsequent packet (flit) takes same route
I Reduces latency considerably

Routing: Cut-through Routing

I Similar to packet switching: break message into chunks
I Send a tracer from source to destination to determine route
I Send message in flits (packets) along single route
I Include minimal overhead in packet for error correction,

re-routing, etc.
I Cost to communicate message size M between two PEs L hops

away
tcomm = ts + Lth + twM

The Simplified Model Communication Model
When analyzing performance of programs, consider the following

I ts : Startup time, incurred once
I th: Per-hop time, overhead incurred for each link between

source and destination
I tw : Per-word transfer time between two nodes, takes tw ×M

time for each link between source and destination
I L: number of links to traverse
I M: number of words being sent

Simplified model advocated by Grama et. al

tcomm = ts + twM

I Easy to understand/use
I Relatively easy to apply to programs
I Ignores a pretty big component: why?
I Why would the text adopt this podunk model?

Our Approach

Analyzing Communication
Patterns
Will incorporate number of hops
L between PEs in the network

tcomm = ts + Lth + twM

Try to derive good
source/destination pairs and
message routes

Analyzing Programs
Will ignore network topology,
congestion, number of hops

tcomm = ts + twM

Somewhat unrealistic but makes
analysis much simpler

