
Java Threads in a Nutshell

Chris Kauffman

CS 499: Spring 2016 GMU



Logistics

Schedule

4/19 Tue PThreads
Thu Java Threads

4/26 Tue Parallel Languages
Mini-Exam 4

Thu Parallel Platforms
5/3 Tue Review

HW 4 Due

5/5 Thu Final Exam
12:00-2:00pm

Reading

I Java Concurrency Tutorial
I Will post some links to

parallel languages over the
weekend

HW4 Upcoming
By tomorrow morning. Seriously.
I’m not kidding. I promise.
Please believe me.

https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html


Threads in Java

I Java was built with concurrency in mind
I java.lang.Thread is a core part of the language
I Represents a runnable unit
I java.lang.Runnable does so similarly as an interface

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html


Typical Parallel Setup

I Create a class which extends Thread
I Override the run() method to do real work
I In a main() method, instantiate the thread class and invoke

the thread.start(), thread begins execution asynchronously
I Eventually call thread.join() to wait for thread to finish



Picalc example (again)

Three variants
1. Reduction version: no thread synchronization required
2. Synchronized methods: only one thread executes a method at

a time
3. Synchronized statements: any java object can be a lock



Highlights of PicalcReduction.java
I Create a nested subclass

static class CalcThread extends Thread

I Fields and constructor allows initialization information to be
communicated

public CalcThread(int threadNum, int nPoints){
this.threadNum = threadNum;
this.nPoints = nPoints;

}

I Override the public void run() to perform initialize a Random
number generator, perform hit computations, update this.hits

I Accessor public int getHits() allows retrieval of hits computed
I main() method creates an array of CalcThreads, starts them

running
I join() each thread to wait for it to finish, sum up hits with

threads[i].join();
totalHits += threads[i].getHits();

I Must be aware of an irritating InterruptedException



Highlights of PicalcSynchMethod.java

I Class field to track total hits
static int totalHits;

I Class method to control updates: synchronized
static synchronized void incrTotal(){

totalHits++;
}

I Only one thread in the method at a time
I Nested class CalcThread calls incrTotal() to update

totalHits
I main() spins up threads and waits to join
I No need to perform any reductions



Highlights of PicalcSynchStatement.java

I Class field to track total hits
static int totalHits;

I Class field to serve as a lock to control access
static Object lock = new Object();

I Nested class CalcThread directly updates by
acquiring/releasing lock
synchronized(lock){

totalHits++;
}

I Only one thread in the critical section at time
I main() spins up threads and waits to join
I No need to perform any reductions



Timings of Java Variants

lila [java-threads-code]% time -p java PicalcSynchMethod 10000000 4
npoints: 10000000
hits: 7854727
pi_est: 3.141891
real 1.30
user 3.86
sys 0.46

real user sys
Reduction 0.25 0.72 0.02
SynchMethod 1.30 3.86 0.46
SynchStatement 1.31 3.95 0.32

Note: Timing java programs is even trickier than other programs,
not willing to stake my already sullied reputation on these, just to
give you a vague sense



Exercise: Java Collisions

http://cs.gmu.edu/~kauffman/cs499/Collisions.java

I Parallelize main computation loop
I Will require a Thread subclass
I Try using either reductions or synchronized

methods/statements
I Be fairly specific with your designs - sketch subclasses, fields,

methods
I Discuss solutions

http://cs.gmu.edu/~kauffman/cs499/Collisions.java


Note on Synchronized Sections
I Synchronized methods are synced on the associated object
I Only one thread is in ANY method at a time
I Maintain consistency of object state
I static methods sync on class, can only be in one at a time

class C { class D {
int total; static int total;
public C(){ this.total = 0; }

synchronized void incrTotal(){ synchronized static void incrTotal(){
total++; total++;

} }
synchronized void decrTotal(){ synchronized static void decrTotal(){

total++; total++;
} }

} }

Contrast

I Unlike the new collection implementations, Vector is synchronized.

I ArrayList: Note that this implementation is not synchronized.



Example of Easy Creation of a Synchronized Instance

From ArrayList Java Docs
Note that this implementation is not synchronized. If multiple threads
access an ArrayList instance concurrently, and at least one of the threads
modifies the list structurally, it must be synchronized externally. (A
structural modification is any operation that adds or deletes one or more
elements, or explicitly resizes the backing array; merely setting the value
of an element is not a structural modification.) This is typically
accomplished by synchronizing on some object that naturally encapsulates
the list. If no such object exists, the list should be "wrapped" using the
Collections.synchronizedList method. This is best done at creation time,
to prevent accidental unsynchronized access to the list:

List list = Collections.synchronizedList(new ArrayList(...));

Question
What does the code for synchronizedList(..) look like?

https://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html


Iterators are Inherently Serial

Manual synchronization on iterators is still required.

synchronized (list) {
Iterator i = list.iterator();
while (i.hasNext())

foo(i.next());
}

I Required if another thread is performing list.add(x)
I Prevents ConcurrentModificationException



Wait, Notify, Volatility
class C {

public volatile boolean joy = false;
public void guardedJoy() {

while(!joy) {} // Busy polling
System.out.println("Joy has been achieved!");

}

public synchronized void guardedJoy() {
while(!joy) {

try {
this.wait(); // Blocking wait

} catch (InterruptedException e) {}
}
System.out.println("Joy and efficiency have been achieved!");

}
public synchronized notifyJoy() {

this.joy = true;
this.notifyAll();

}
}

See: WaitNotify.java for timings



Java’s Memory Model

At the bottom of this issue lies the need for aggressive
optimization in the face of concurrency: any mechanism
which ensures memory coherency between threads is
expensive, and much (most) of the data is not shared
between threads. Therefore the data not explicitly marked
volatile, or protected by locks, is treated as thread-local
by default (without strict guarantees, of course).
– Marko Topolnik, Stack Overflow

http://stackoverflow.com/questions/21268064/is-this-starvation/21268200#21268200


Other Capabilities in Java

I Concurrent collections (ConcurrentMap rather than HashMap
and TreeMap)

I Runnable interface - class provides a run() method
Runnable r = new Something(); Thread t = new Thread(r);

I Executor interface and associates for more complex
scheduling

I Use of ThreadPools to farm out work
I New-ish ForkJoinPool

Generally concurrency is a prime part of Java and one of its
strengths.
We may discuss a few alternative JVM languages which build up
higher structures on these capabilities.


