
OpenMP: Open Multi-Processing

Chris Kauffman

CS 499: Spring 2016 GMU

Logistics

Today

I OpenMP Wrap-up
I Mini-Exam 3

Reading

I Grama 7.10 (OpenMP)
I OpenMP Tutorial at

Laurence Livermore
I Grama 7.1-9 (PThreads)

HW4 Upcoming

I Post over the weekend
I Due in last week of class
I OpenMP Password Cracking
I PThreads Version
I Exploration of alternative

programming models
I Maybe a sorting routine. . .

https://computing.llnl.gov/tutorials/openMP
https://computing.llnl.gov/tutorials/openMP

OpenMP: High-level Shared Memory Parallelism

I OpenMP = Open Multi-Processing
I A standard, implemented by various folks, compiler-makers
I Targeted at shared memory machines: multiple processing

elements sharing memory
I Specify parallelism in code with

I Some function calls: which thread number am I?
I Directives: do this loop using multiple threads/processors

I Can orient program to work without need of additional
processors - direct serial execution

I The easiest parallelism you’ll likely get in C/C++

#pragma

The ‘#pragma’ directive is the method specified by the C
standard for providing additional information to the
compiler, beyond what is conveyed in the language itself.
– GCC Manual

I Similar in to Java’s annotations (@Override)
I Indicate meta-info about about code

printf("Normal execution\n");

#pragma do something special below
normal_code(x,y,z);

I Several pragmas supported by gcc including poison and
dependency

https://gcc.gnu.org/onlinedocs/cpp/Pragmas.html

OpenMP Basics

#pragma omp parallel
single_parallel_line();

#pragma omp parallel
{

parallel_block();
with_multiple(statements);
done_in_parallel();

}

I Pragmas indicate a single line or block should be done in
parallel.

I Examine openmp_basics.c

Compiler Support for OpenMP

I GCC supports OpenMP with appropriate options
I Compile without Parallelism

gcc -o openmp_basics openmp_basics.c
I Compile with Parallelism

gcc -o openmp_basics openmp_basics.c -fopenmp
I I’m testing using gcc 5.3.0, zeus has 4.4.7, may be some

inconsistencies
I Most other modern compilers have support for OpenMP

I M$ Visual C++
I Intel C/C++ compiler

https://msdn.microsoft.com/en-us/library/0ca2w8dk.aspx
https://software.intel.com/en-us/node/522690

Hints at OpenMP Implementation
I OpenMP ≈ high-level parallelism
I PThreads ≈ lower-level parallelism
I From GOMP Documentation:

OMP CODE
#pragma omp parallel
{

body;
}

BECOMES
void subfunction (void *data){

use data;
body;

}
setup data;
GOMP_parallel_start (subfunction, &data, num_threads);
subfunction (&data);
GOMP_parallel_end ();

Note exactly a source transformation, but OpenMP can leverage
many existing pieces of Posix Threads libraries.

https://gcc.gnu.org/onlinedocs/libgomp/Implementing-PARALLEL-construct.html#Implementing-PARALLEL-construct
http://stackoverflow.com/questions/14878928/compile-openmp-into-pthreads-c-code

Sample Translation: OpenMP → PThreads

OpenMP Thread Identification

I OpenMP divides computation into threads
I Threads

I Parallel execution path in the same process
I Have some private data but may share some data with threads

on both stack and heap

I Like MPI and Unix IPC, OpenMP provides basic identification
functions

#pragma omp parallel reduction(+: total_hits)
{

int thread_id = omp_get_thread_num();
int num_threads = omp_get_num_threads();
int work_per_thread = total_work / num_threads;
...;

}

Number of Threads Can be Specified
// Default # threads is based on system
#pragma omp parallel
{

run_with_max_num_threads();
}
// Set number of threads based on command line
if (argc > 1) {

omp_set_num_threads(atoi(argv[1]));
}
#pragma omp parallel
{

run_with_current_num_threads();
}

// Set number of threads as part of pragma
#pragma omp parallel num_threads(2)
{

run_with_two_threads();
}
int NT = 4;
#pragma omp parallel num_threads(NT)
{

run_with_four_threads();
}

Tricky Memory Issues Abound

Program Fragment

int id_shared=-1;
int numThreads=0;

#pragma omp parallel
{

id_shared = omp_get_thread_num();
numThreads = omp_get_num_threads();
printf("A: Hello from thread %d of %d\n",

id_shared, numThreads);
}

printf("\n");

#pragma omp parallel
{

int id_private = omp_get_thread_num();
numThreads = omp_get_num_threads();
printf("B: Hello from thread %d of %d\n",

id_private, numThreads);
}

Possible Output

A: Hello from thread 2 of 4
A: Hello from thread 3 of 4
A: Hello from thread 0 of 4
A: Hello from thread 0 of 4

B: Hello from thread 1 of 4
B: Hello from thread 3 of 4
B: Hello from thread 0 of 4
B: Hello from thread 2 of 4

Lessons

I Threads share heap
I Threads share any stack variables not in parallel blocks
I Thread variables are private if declared inside parallel blocks
I Take care with shared variables

Exercise: Pi Calc

Consider:
https://cs.gmu.edu/~kauffman/cs499/omp_picalc.c
Questions to Answer:

I How is the number of threads used to run determined?
I What is the business with reduction(+: total_hits)?
I Can variables like points_per_thread be moved out of the

parallel block?
I What is going on with rand_r(&seed)? Should seed be

renamed?
I Do you expect speedup for this computation?

https://cs.gmu.edu/~kauffman/cs499/omp_picalc.c

rand() vs rand_r(long *state)

I rand() generates random integers on each invocation
I How can a function can return a different value on each call?
I rand_r(x) does the same thing but takes a parameter
I What is that parameter?
I What’s the difference between these two?

Explore variant pi_calc_rand_r which exclusively uses
rand_r()’s capabilities.

Comparing usage of rand_r()
What looks interesting to you about these two results.

omp_picalc.c
#pragma omp parallel ...
{

unsigned int seed =
123456789 * thread_id;

...
double x =

((double) rand_r(&seed))...

TIMING
> gcc omp_picalc.c -fopenmp
> time -p a.out 100000000
npoints: 100000000
hits: 78541717
pi_est: 3.141669
real 0.52
user 2.00
sys 0.00

omp_picalc_rand_r.c:
unsigned int seed =

123456789;
#pragma omp parallel...
{

...
double x =

((double) rand_r(&seed))...

TIMING
> gcc omp_picalc_rand_r.c -fopenmp
> time -p a.out 100000000
npoints: 100000000
hits: 77951102
pi_est: 3.118044
real 3.05
user 11.77
sys 0.01

Note on rand()
I Not sure if rand() is or is thread-safe
I Conflicting info in manual, likely that this is a system

dependent property
I Be careful

The function rand() is not reentrant, since it uses hidden
state that is modified on each call. This might just be the
seed value to be used by the next call, or it might be
something more elaborate. In order to get reproducible
behavior in a threaded application, this state must be
made explicit; this can be done using the reentrant
function randr().

|---------------------------+---------------+---------|
| Interface | Attribute | Value |
|---------------------------+---------------+---------|
| rand(), rand_r(), srand() | Thread safety | MT-Safe |
|---------------------------+---------------+---------|

Reduction

omp_picalc.c used a reduction() clause

#pragma omp parallel reduction(+: total_hits)
{

...;
total_hits++;

}

I Guarantees shared var total_hits is updated properly by all
procs,

I As efficient as possible with an increment
I May exploit the fact that addition is transitive - can be done in

any order
I Most arithmetic ops available

Alternative: Atomic

#pragma omp parallel
{

...;
#pragma omp atomic
total_hits++;

}

I Use atomic hardware instruction available
I Restricted to single operations, usually arithmetic
I No hardware support → compilation problem

#pragma omp atomic
printf("woot"); // compile error

Alternative: Critical Block

#pragma omp parallel
{

...;
#pragma omp critical
{

total_hits++;
}

}

I Not restricted to hardware supported ops
I Uses locks to restrict access to a single thread

Reduction vs. Atomic vs. Critical
I omp_picalc_alt.c has commented out versions of for each

of reduction, atomic, and critical
I Examine timing differences between the three choices

lila [openmp-code]% gcc omp_picalc_alt.c -fopenmp
lila [openmp-code]% time -p a.out 100000000 4
npoints: 100000000
hits: 78541717
pi_est: 3.141669

real ??? - Elapsed (wall) time
user ??? - Total user cpu time
sys ??? - Total system time

Time Threads real user sys
Serial 1 1.80 1.80 0.00
Reduction 4 0.52 2.00 0.00
Atomic 4 2.62 9.98 0.00
Critical 4 9.02 34.46 0.00

Exercise: No Reduction for You
int total_hits=0;
#pragma omp parallel reduction(+: total_hits)
{

int num_threads = omp_get_num_threads();
int thread_id = omp_get_thread_num();
int points_per_thread = npoints / num_threads;
unsigned int seed = 123456789 * thread_id;
int i;
for (i = 0; i < points_per_thread; i++) {

double x = ((double) rand_r(&seed)) / ((double) RAND_MAX);
double y = ((double) rand_r(&seed)) / ((double) RAND_MAX);
if (x*x + y*y <= 1.0){

total_hits++;
}

}
}

I Reformulate picalc to NOT use reduction clause, use
atomic or critical sections instead

I Constraint: must have same speed as the original reduction
version

I Hint: draw on your experience from distributed MPI days

Parallel Loops

#pragma omp parallel for
for (int i = 0; i < 16; i++) {

int id = omp_get_thread_num();
printf("Thread %d doing iter %d\n",

id, i);
}

OUTPUT
Thread 0 doing iter 0
Thread 0 doing iter 1
Thread 0 doing iter 2
Thread 0 doing iter 3
Thread 2 doing iter 8
Thread 2 doing iter 9
Thread 2 doing iter 10
Thread 2 doing iter 11
Thread 1 doing iter 4
Thread 1 doing iter 5
...

I OpenMP supports
parallelism for independent
loop iterations

I Note variable i is declared in
loop scope

I Iterations automatically
divided between threads in a
blocked fashion

Exercise: OpenMP Matrix Vector Multiply

I Handout matvec.c: serial code to generate a matrix, vector
and multiply

I Parallelize this with OpenMP
I Consider which #pragma to use
I Annotate with any problem spots

Available at: https://cs.gmu.edu/~kauffman/cs499/matvec.c

https://cs.gmu.edu/~kauffman/cs499/matvec.c

Original Timing Differences

// OUTER
#pragma omp parallel for
for(int i=0; i<rows; i++){

for(int j=0; j<cols; j++){
res[i] += mat[i][j] * vec[j];

}
}
// INNER
for(int i=0; i<rows; i++){

#pragma omp parallel for
for(int j=0; j<cols; j++){

res[i] += mat[i][j] * vec[j];
}

}
// BOTH
#pragma omp parallel for
for(int i=0; i<rows; i++){

#pragma omp parallel for
for(int j=0; j<cols; j++){

res[i] += mat[i][j] * vec[j];
}

}

SKINNY
> gcc omp_matvec_timing.c -fopenmp
> a.out 20000 10000
Outer : 0.3143
Inner : 0.8805
Both : 0.4444

FAT
> a.out 10000 20000
Outer : 0.2481
Inner : 0.8038
Both : 0.3750

Consider the timing differences between
each of these three and explain the
differences at least between

I OUTER SKINNY vs OUTER FAT
I INNER SKINNY vs INNER FAT
I OUTER vs INNER on both FAT

and SKINNY

Updated Timing Differences

// OUTER
#pragma omp parallel for
for(int i=0; i<rows; i++){

for(int j=0; j<cols; j++){
res[i] += mat[i][j] * vec[j];

}
}
// INNER: with reduction
for(int i=0; i<rows; i++){

double sum = 0.0;
#pragma omp parallel \

reduction(+:sum)
{

#pragma omp for
for(int j=0; j<cols; j++){

sum += mat[i][j] * vec[j];
}

}
result[i] = sum;

}

SKINNY
> gcc omp_matvec_timing.c -fopenmp
> a.out 20000 10000
Outer : 0.2851
Inner : 0.2022
Both : 0.2191

FAT
> a.out 10000 20000
Outer : 0.2486
Inner : 0.1911
Both : 0.2118

> export OMP_NESTED=TRUE
> a.out 20000 10000
Outer : 0.2967
Inner : 0.2027
Both : 1.1783

Reduction was missing in the old
version

Why the performance difference for Inner/Both?

Nested parallelism turned off

No Reduction

SKINNY
> gcc omp_matvec_timing.c -fopenmp
> a.out 20000 10000
Outer : 0.3143
Inner : 0.8805
Both : 0.4444

FAT
> a.out 10000 20000
Outer : 0.2481
Inner : 0.8038
Both : 0.3750

With Reduction

SKINNY
> gcc omp_matvec_timing.c -fopenmp
> a.out 20000 10000
Outer : 0.2851
Inner : 0.2022
Both : 0.2191

FAT
> a.out 10000 20000
Outer : 0.2486
Inner : 0.1911
Both : 0.2118

Nested Parallelism is Not the Default

> gcc omp_matvec_printing.c -fopenmp
> a.out 10000 20000
#threads = 4 (outer)
#threads = 4 (inner)
#threads = 4 (both outer)
#threads = 1 (both inner)
Outer : 0.2547
Inner : 0.8186
Both : 0.3735

> export OMP_NESTED=TRUE
> a.out 10000 20000
#threads = 4 (outer)
#threads = 4 (inner)
#threads = 4 (both outer)
#threads = 4 (both inner)
Outer : 0.2904
Inner : 0.8297
Both : 0.8660

I Aspects of OpenMP can be
controlled via function calls
omp_set_nested(1); // ON
omp_set_nested(0); // OFF

I Can also be specified via
environment variables
export OMP_NESTED=TRUE
export OMP_NESTED=OFF
export OMP_NUM_THREADS=4

I Env. Vars are handy for
experimentation

I Features such as loop
scheduling are controllable
via directives, function calls,
or environment variables

Syntax Note

#pragma omp parallel
{

#pragma omp for
for (int i = 0; i < REPS; i++) {

int id = omp_get_thread_num();
printf("Thread %d did iter %d\n",

id, i);
}

}
printf("\n");

// ABOVE AND BELOW IDENTICAL

#pragma omp parallel for
for (int i = 0; i < REPS; i++) {

int id = omp_get_thread_num();
printf("Thread %d did iter %d\n",

id, i);
}
printf("\n");

I Directives for OpenMP can
be separate or coalesced

I Code on top and bottom are
parallelized the same way

I In top code, removing first
#pragma removes parallelism

Loop Scheduling - 4 Types
Static

I So far only done static
scheduling with fixed size
chunks

I Threads get fixed size
chunks in rotating fashion

I Great if each iteration has
same work load

Dynamic

I Threads get fixed chunks
but when done, request
another chunk

I Incurs more overhead but
balances uneven load better

Guided
I Hybrid between

static/dynamic, start with
each thread taking a "big"
chunk

I When a thread finishes,
requests a "smaller" chunk,
next request is smaller

Runtime
I Environment variables used

to select one of the others
I Flexible but requires user

awareness: What’s an
environment variable?

Code for Loop Scheduling

Basic Codes
I omp_loop_scheduling.c demonstrates loops of each kind

with printing
I omp_guided_schedule.c longer loop to demonstrate

iteration scheduling during Guided execution

Attempts to Get Dynamic/Guided Scheduling to Shine

I omp_collatz.c looping to determine step counts in Collatz
sequences

I omp_spellcheck.c simulates spell checking with linear search
for words

I In both cases Static scheduling appears to work just as well for
large inputs

Exercise: Looking Forward To HW 4

I Likely do a password cracking exercise
I Given an securely hashed password file
I Describe means to decrypt password(s) in this file
I How might one parallelize the work and why
I Does static or dynamic scheduling seem more appropriate?

Thread Variable Declarations
Pragmas can specify that variables are either shared or private. See
omp_private_variables.c

tid = -1;
#pragma omp parallel
{

tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);

}

tid = -1;
#pragma omp parallel private(tid)
{

tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);

}

Also available
I shared which is mostly redundant
I firstprivate guarantees initialization with shared value
I All of these are subsumed by lexical scoping in C

Sections: Non-loopy Parallelism

I Independent code can be "sectioned" with threads taking
different sections.

I Good to parallelize distinct independent execution paths
I See omp_sections.c

#pragma omp sections
#pragma omp section
{

printf("Thread %d computing d[]\n",
omp_get_thread_num());

for (i=0; i < N; i++)
d[i] = a[i] * b[i];

}

#pragma omp section
printf("Thread %d chillin’ out\n",

omp_get_thread_num());
}

Locks in OpenMP

I Implicit parallelism/synchronization is awesome but. . .
I Occasionally need more fine-grained control
I Lock facilities provided to enable mutual exclusion
I Each of these have analogues in PThreads we will discuss later

void omp_init_lock(omp_lock_t *lock); // create
void omp_destroy_lock(omp_lock_t *lock); // destroy
void omp_set_lock(omp_lock_t *lock); // wait to obtain
void omp_unset_lock(omp_lock_t *lock); // release
int omp_test_lock(omp_lock_t *lock); // check, don’t wait

