
Parallel Languages and Platforms

Chris Kauffman

CS 499: Spring 2016 GMU

Logistics

Schedule

4/19 Tue PThreads
Thu Java Threads

4/26 Tue Parallel Languages
Mini-Exam 4

Thu Parallel Platforms
5/3 Tue Review

HW 4 Due

5/5 Thu Final Exam
12:00-2:00pm

Today

I Mini-exam 4 back
I Parallel Languages and

Platforms

An Upcoming Event: Thursday 4/28 9-11am, DC
High-performance computing (HPC)—which leverages
"supercomputers" and massively parallel processing
techniques to solve complex computational problems
through computer modeling, simulation, and data analysis
techniques—represents a strategic, game-changing
technology with tremendous economic competitiveness,
science leadership, and national security implications for
the United States. But as competitor countries
dramatically increase their investments in HPC systems
and technologies, future U.S. leadership in HPC is no
longer assured. Join ITIF as it releases an important new
report explaining why HPC is increasingly vital to
America’s economic competitiveness and details the
intensifying global competition for HPC systems
leadership, in particular the race to exascale computing.
The event is free and open to the public
– The Vital Importance of High-Performance Computing
to U.S. Competitiveness and National Security,
Information Technology & Innovation Foundation

https://itif.org/events/2016/04/28/vital-importance-high-performance-computing-us-competitiveness-and-national
https://itif.org/events/2016/04/28/vital-importance-high-performance-computing-us-competitiveness-and-national
https://itif.org/events/2016/04/28/vital-importance-high-performance-computing-us-competitiveness-and-national

HW 4: Password Cracker

I Parallelize breaking single passwords (single mode)
I Simple approach: try multiple words from given dictionaries
I Do so with

I OpenMP: omp_passcrack.c
I PThreads: pthread_passcrack.c

I Don’t touch original serial code
I Add code in parallel_funcs.c
I Modify main() funcs in appropriate C files
I Tricks: Unroll recursion of try_crack() function one layer
I Pay attention to "canceling" other threads when a solution is

found
I Use timing script to get a sense of timing

Menagerie of Parallel Languages and Platforms

Distributed Memory Only
Erlang, Map+Reduce / Hadoop, Job Schedulers

Shared Memory Only
Cilk, Clojure

Distributed + Shared
Unified Parallel C, Chapel (later)

Device Concurrency / GPUs
CUDA / OpenCL (later)

Erlang

Source

I Developed for distributed
computation, telephony
systems

I Virtual machine which
mirrors many OS functions

I Process spawn to create
lightweight procs

I send/receive clauses to
share information among
processes

I Facilities to contact a
remote Erlang VM and talk
to its processes

http://www.slideshare.net/ezmobius/erlangfactory/11-Erlang_VM

Erlang Sample straight from Wikipedia

% Create a process on this machine and invoke the function
% web:start_server(Port,MaxConnections)

ServerProcess = spawn(web, start_server, [Port, MaxConnections]),

% Create a remote process and invoke the function
% web:start_server(Port, MaxConnections)
% on machine RemoteNode

RemoteProcess = spawn(RemoteNode, web, start_server, [Port, MaxConnections]),

% Send a message to ServerProcess (asynchronously). The message
% consists of a tuple with the atom "pause" and the number "10".

ServerProcess ! {pause, 10},

% Receive messages sent to this process
receive

a_message -> do_something;
{data, DataContent} -> handle(DataContent);
{hello, Text} -> io:format("Got hello message: ~s", [Text]);
{goodbye, Text} -> io:format("Got goodbye message: ~s", [Text])

end.

https://en.wikipedia.org/wiki/Erlang_(programming_language)

Erlang’s Nature and Target

I Syntax and semantics are somewhat odd/archaic but can be
"gotten used to"

I Targeted at client server architectures, computation distributed
across many nodes

I Well known for robustness of the VM, fault-tolerance features
to keep application going if participating nodes go down

I Not targeted at high-performance computation / scientific
problems, more towards business, IT, web services

MapReduce (or more properly Map, Shuffle, Reduce)
I A style of programming, inspired by functional programming

(def doub-sum (reduce + 0 (map double ’(1 2 3 4 5))))
I Targeted at big data: large distributed stores of data

I Map: Transform / filter data in some way
I Shuffle: Move data with same properties to same node
I Reduce: Combine results on individual nodes

Basic Architecture of MapReduce

Source: Yahoo Developer Tutorial on MapReduce

https://developer.yahoo.com/hadoop/tutorial/module4.html

Shameless Wikipedia Example: Document Word Counts

Pseudocode

function map(String name,
String document):

// name: document name
// document: document contents
for each word w in document:

emit (w, 1)

function reduce(String word,
Iterator partialCounts):

// word: a word to count
// partialCounts: list of

partial counts
sum = 0
for each pc in partialCounts:

sum += pc
emit (word, sum)

I Goal: produce frequency
of each word in a
document

I Nodes are each fed the
document

I During reduce() emit
pairs like ("apple",1)
and ("Dell",1)

I System automatically
sends pairs with key
apple to the same nodes
(redistribute)

I Nodes run reduce() to
count apple occurrences,
may redistribute further

https://en.wikipedia.org/wiki/MapReduce

Variety of Languages for MapReduce Framework
public static class MapClass extends MapReduceBase

implements Mapper<LongWritable, Text, Text, IntWritable>
{

private final static
IntWritable one = new IntWritable(1);

private Text word = new Text();
public void
map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException

{
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {

word.set(itr.nextToken());
output.collect(word, one);

}
}

}
public static class Reduce extends MapReduceBase

implements Reducer<Text, IntWritable, Text, IntWritable>
{

public void
reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException

{
int sum = 0;
while (values.hasNext()) {

sum += values.next().get();
}
output.collect(key, new IntWritable(sum));

}
}

Problem: Word
Frequencies in a
Document

← Java (Source)

Pig Latin ↓ (Source)

A = load ’./input.txt’;
B = foreach A generate

flatten(TOKENIZE((chararray)$0))
as word;

C = group B by word;
D = foreach C generate COUNT(B), group;
store D into ’./wordcount’;

https://developer.yahoo.com/hadoop/tutorial/module4.html
http://salsahpc.indiana.edu/ScienceCloud/pig_word_count_tutorial.htm

MapReduce Framework Notes
I Primary contribution of implementations is distributing load

across many machines efficiently
I When machines both store some data and participate in

MapReduce, gain locality for speed
I Alternative to large database processing, may open up

opportunities for parallelism to avoid read/write locks in
traditional DBs

I Most frequently referenced implementation is Apache Hadoop

But other implementations exist, some proprietary
I All implementation implement a MapReduce server/scheduler

to which jobs are submitted
> javac MRWordCount.java
> java MRWordCount &
> bin/hadoop job -list
1 jobs currently running
JobId State StartTime UserName
job_0001 1 1218506470390 kauffman

Job Schedulers

I Has long been the need for many parallel jobs to be run on
individual systems/clusters

I Job schedulers offer frameworks for this: submit many
programs to run, scheduler assigns resources

I slurm: scheduler on medusa cluster which you used to
schedule jobs running

I Generic form of easy concurrency for variety of different
programs, resources etc.

Cilk and CilkPlus (supported in gcc/g++)
I Tutorial Here
I Extensions to C/C++ which enable easy spawning of threads

(strands) to run functions concurrently
I Primary Additions are keywords to easily spawn functions

// Run func concurrently - separate thread
int x = cilk_spawn func(n);
...

// Wait for all running functions to finish
cilk_sync;

// Compile with cilk features enabled
> gcc -fcilkplus cilk-fib.c

I Examine: cilk-fib.c
I Contrast with PThread startup

http://faculty.knox.edu/dbunde/teaching/cilk/

cilk_for loop, Reducers
I Similar to OpenMP, Cilk provides loop parallelization and

reduction
I See cilk-for-picalc.cpp

#include <cilk/cilk.h>
#include <cilk/reducer_opadd.h>

// C++ class for reductions
cilk::reducer_opadd<int> total_hits;

// Appropriate for parallel contexts
total_hits++;

// Retrive final value
int th = total_hits.get_value();

// Automatic loop parallelization
cilk_for (int i = 0; i < npoints; i++) {

...;
}

Array-based Operations
I Cilk provides some convenient syntax for array operations
I Vectorized operations automatically created
I Compile can sometimes do this but special notation helps hint

// standard element-wise vector multiply
void axpy(int n, double alpha, const double *x, double *y)
{

for (int i = 0; i < n; i++) {
y[i] += alpha * x[i];

}
}

// Cilk Plus abbreviated syntax
void axpy_cilk(int n, double alpha, const double *x, double *y)
{

y[0:n] += alpha * x[0:n];
}

I Matlab/Octave are well known for this style
I See cilk-array-syntax.c for uses

Clojure and Software Transactional Memory

I A lisp which runs on the Java Virtual Machine
I Design Goal: allow for shared memory parallelism to be

exploited
I Realization:

I Each data element has well-defined local/shared semantics
I Data is immutable by default
I Provides atom data types for atomic alterations
I Other alterations to shared resources occur in dosync blocks
I Software Transactional Memory (STM) system: try changing a

shared area, if it changes, try again with the new current value
I Runs as an executable JAR

> java -jar clojure-1.8.0.jar
Clojure 1.8.0
user=> (def x (atom 0))
#’user/x
user=> x
#object[clojure.lang.Atom 0x6c372fe6 {:status :ready, :val 0}]
user=> @x
0

Picalc in Clojure

;; Serial version with atomic updates
(defn calc-pi-atoms [iterations]

(let [hits (atom 0)]
(dotimes [i iterations]

(let [x (rand) y (rand)]
(if (<= (+ (* x x) (* y y)) 1)

(swap! hits inc))))
(double (* (/ @hits iterations) 4))))

;; Parallel version with atomic updates
(defn calc-pi-atoms [iterations nthreads]

(let [hits (atom 0)]
(doall (pmap ;; parallel map, force evaluation

(fn [x]
(dotimes [i (/ iterations nthreads)]

(let [x (rand) y (rand)]
(if (<= (+ (* x x) (* y y)) 1)

(swap! hits inc)))))
(range nthreads))) ;; map onto number of threads

(double (* (/ @hits iterations) 4))))

Common HPC Parallel Platform

I Similar config to medusa cluster we used
I Cluster of machines, each with multiple cores
I Options to program:

I Serial execution on each core/machine
I Parallel shared memory execution on each

machine
I Parallel distributed memory execution on

each core
I Mixed: Distributed/Shared parallel

execution
Mixing MPI and
OpenMP

Unified Parallel C (requires special compiler)
I Extensions to the C language
I Aimed at BOTH shared memory and distributed memory
I Automatic THREADS and id MYTHREAD variables
I Thread is more generalized: might be same machine (shared)

or different machine (distributed)
I Shared memory blocks

shared int all_hits[THREADS];
Access like int x = all_hits[1]; will work locally (shared)
or via MPI-style message passing if remote (distributed)

I Compiler/runtime automatically sets up sharing
I Standard locks
I Automatic loop parallelization via upc_forall(..) with some

affinity control: which thread executes which iteration
I Control over layout of shared blocks of memory: which thread

gets what section
I Examine upc-shared-picalc.c

