
Parallel Sorting

Chris Kauffman

CS 499: Spring 2016 GMU

Logistics

Today

I Trailing questions on
HW2?

I Review Parallel
Performance Theory

I Parallel Sorting

Normal Office Hours
I Tue 3/1 3:30-5:30

Reading: Grama Ch 9

I Sorting
I Focus on 9.4: Quicksort

Schedule

Tue 2/23 PageRank & MPI
Thu 2/25 Performance Analysis
Mon 2/29 HW 2 Due 11:59pm
Tue 3/1 Performance, Parallel Sorting
Thu 3/3 Guest Lecture, Mini-Exam 2
3/2-3/4 HW 2 Interviews

Quick Review

I What is Amdahl’s law? What does it say about the speedup
achievable by parallel programs?

I How does one calculate the following for a parallel algorithm
I S: Speedup
I E: Efficiency
I C: Cost

I How does the Efficiency of a parallel usually change if the
problem size increases but the number of processors P stays
the same?

I How does the Efficiency of a parallel usually change if the
number of processors P increases but the problem size stays
the same?

I What is Parallel Overhead?
I What is Isoefficiency?

Sorting

I Much loved computation problem
I What is the best complexity of general purpose

(comparison-based) sorting algorithms?
I What are some algorithms which have this complexity?
I What are some other sorting algorithms which aren’t so hot?
I What issues need to be addressed to parallelize any sorting

algorithm?

Partition and Quicksort
I Quicksort has O(N logN) average complexity
I In-place, low overhead sorting, recursive

Partition
I Partition: select pivot value
I On completion

I Left array is ≤ pivot
I Right array is > pivot
I pivot is in "middle"

algorithm partition(A, lo, hi) is
pivot := A[hi]
boundary := lo
for j := lo to hi - 1 do
if A[j] <= pivot then

swap A[boundary] with A[j]
boundary++

swap A[i] with A[hi]
return boundary

Quicksort

I Partition into two parts
I Recurse on both halves
I Bail out when boundaries

lo/hi cross

algorithm quicksort(A, lo, hi) is
if lo < hi then
p := partition(A, lo, hi)
quicksort(A, lo, p – 1)
quicksort(A, p + 1, hi)

Serial Quicksort

Practical Parallel Sorting Setup

I Input array A of size N is already spread across P processors
(no need to scatter)
P0: A[] = { 84 31 21 28 }
P1: A[] = { 17 20 24 84 }
P2: A[] = { 24 11 31 99 }
P3: A[] = { 13 32 26 75 }

I Goal: Numbers sorted across processors. Smallest on P0, next
smallest on P1, etc.
P0: A[] = { 11 13 17 20 }
P1: A[] = { 21 24 24 26 }
P2: A[] = { 28 31 32 33 }
P3: A[] = { 75 84 84 99 }

I Want to use P processors as effectively as possible
I Bulk communication preferred over many small messages

Exercise: Parallel Quicksort

I Find a way to parallelize quicksort
I Hint: The last step is each processor sorting its own data using

a serial algorithm. Try to arrange data so this is possible.

START:
P0: A[] = { 84 32 21 28 }
P1: A[] = { 17 20 25 85 }
P2: A[] = { 24 11 31 99 }
P3: A[] = { 13 32 26 75 }

GOAL
P0: A[] = { 11 13 17 20 }
P1: A[] = { 21 24 25 26 }
P2: A[] = { 28 31 32 33 }
P3: A[] = { 75 84 85 99 }

SERIAL ALGORITHM
algorithm quicksort(A, lo, hi) is
if lo < hi then

p := partition(A, lo, hi)
quicksort(A, lo, p – 1)
quicksort(A, p + 1, hi)

algorithm partition(A, lo, hi) is
pivot := A[hi]
boundary := lo
for j := lo to hi - 1 do

if A[j] <= pivot then
swap A[boundary] with A[j]
boundary++

swap A[i] with A[hi]
return boundary

Parallel Quicksort Ideas 1

A[] = { 84 32 21 11 | 17 20 25 85 | 24 28 31 99 | 13 32 26 75 }
P0 P1 P2 P3

Partition(pivot=26) on each processor
A[] = { 21 11 84 32 | 17 20 25 85 | 24 28 31 99 | 13 26 32 75 }
Boundary: ^ ^ ^ ^
Counts: P0: 2 P1: 3 P2: 1 P3: 2
Calculate which data goes where
A[] = { 21 11 84 32 | 17 20 25 85 | 24 28 31 99 | 13 26 32 75 }

P0 P0 P2 P2 P0 P0 P1 P2 P1 P2 P3 P3 P1 P1 P3 P3

Re-arrange so values <= 26 on P0 and P1, > 26 on P2 and P3
A[] = { 21 11 17 20 | 25 24 13 25 | 84 32 85 28 | 31 99 23 75 }

P0 P1 P2 P3

Split the world: 2 groups
A[] = { 21 11 17 20 | 25 24 13 25}|{84 32 85 28 | 31 99 23 75 }

P0 P1 P2 P3

Parallel Quicksort Ideas 2

Each half partitions on different value
P0-P1: Partition(pivot=20)
P2-P3: Partition(pivot=32)
A[] = { 11 17 20 21 | 13 25 24 25}|{28 32 84 85 | 31 23 99 75 }
Boundary: ^ ^ ^ ^
Counts: P0: 3 P1: 1 P2: 2 P3: 2
Calculate which data goes where
A[] = { 11 17 20 21 | 13 25 24 25}|{28 32 84 85 | 31 23 99 75 }

P0 P0 P0 P1 P0 P1 P1 P1 P2 P2 P3 P3 P2 P2 P3 P3
Re-arrange values to proper processors
A[] = { 11 17 20 13 | 21 25 24 25}|{28 32 31 23 | 84 85 99 75 }

P0 P1 P2 P3
Split the world: 4 groups
A[] = { 11 17 20 13}|{21 25 24 25}|{28 32 31 23}|{84 85 99 75 }

P0 P1 P2 P3

4 groups == 4 processors, all processors sort locally
A[] = { 11 13 17 20}|{21 24 25 25}|{23 28 31 32}|{75 84 85 99 }

P0 P1 P2 P3
Done

Issues

I Pivots were cherry-picked to get even distribution
I Generally not possible to do: processors might have uneven

portions of the array after partitioning
I Will require
I Must figure out how to communicate which elements to each

processor
I Must split the world into smaller groups

Prefix Sums / Scan

int MPI_Scan(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

I Similar to reduction
I Change: only add on values from procs <= proc_id
I op can be sum/max/min/etc.
I In Quicksort, use All-gather to get an array of counts of small

values on each proc, follow with Prefix Sum to calculate how
much to send to each processor

All-to-All Personalized Communication

All-to-all personalized communication: like every processor
scattering to every other processor.

Source: Cornell University Center for Advanced Computing

https://cvw.cac.cornell.edu/MPIcc/alltoall

MPI_Alltoall

I Standard version: every processor gets a slice of sendbuf,
same sized data

I Vector version allows different sized slices (appropriate for
quicksort)

int MPI_Alltoall(
void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm);

int MPI_Alltoallv(
void *sendbuf, int sendcounts[], int sdispls[], MPI_Datatype sendtype,
void *recvbuf, int recvcounts[], int rdispls[], MPI_Datatype recvtype,
MPI_Comm comm);

Splitting the World

int MPI_Comm_split(MPI_Comm comm, int color, int key,
MPI_Comm *newcomm);

I comm is the old communicator (start with MPI_COMM_WORLD
I color is which sub-comm to go into
I key establishes rank in new sub-comm, usually proc_id
I newcomm is filled in with a new communicator
I Examine mpi-code/comm-split.c

Ultimate Complexity of Parallel Quicksort

Take a moment to calculate O complexity based on
I N elements
I P processors

