Parallel Sorting

Chris Kauffman

CS 499: Spring 2016 GMU

Logistics

Reading: Grama Ch 9

Today

- Trailing questions on HW2?
- Review Parallel Performance Theory
- Parallel Sorting

Normal Office Hours

- Tue 3/1 3:30-5:30
- Sorting
- Focus on 9.4: Quicksort

Schedule

Tue 2/23 PageRank \& MPI
Thu 2/25 Performance Analysis
Mon 2/29 HW 2 Due 11:59pm
Tue 3/1 Performance, Parallel Sorting
Thu 3/3 Guest Lecture, Mini-Exam 2
3/2-3/4 HW 2 Interviews

Quick Review

- What is Amdahl's law? What does it say about the speedup achievable by parallel programs?
- How does one calculate the following for a parallel algorithm
- S: Speedup
- E: Efficiency
- C: Cost
- How does the Efficiency of a parallel usually change if the problem size increases but the number of processors P stays the same?
- How does the Efficiency of a parallel usually change if the number of processors P increases but the problem size stays the same?
- What is Parallel Overhead?
-What is Isoefficiency?

Sorting

- Much loved computation problem
- What is the best complexity of general purpose (comparison-based) sorting algorithms?
- What are some algorithms which have this complexity?
- What are some other sorting algorithms which aren't so hot?
- What issues need to be addressed to parallelize any sorting algorithm?

Partition and Quicksort

- Quicksort has $O(N \log N)$ average complexity
- In-place, low overhead sorting, recursive

Partition

- Partition: select pivot value
- On completion
- Left array is \leq pivot
- Right array is > pivot
- pivot is in "middle"

```
algorithm partition(A, lo, hi) is
    pivot := A[hi]
    boundary := lo
    for \(\mathrm{j}:=\mathrm{lo}\) to hi - 1 do
    if \(\mathrm{A}[\mathrm{j}]\) <= pivot then
        swap A[boundary] with A[j]
        boundary++
    swap A[i] with A[hi]
    return boundary
```


Quicksort

- Partition into two parts
- Recurse on both halves
- Bail out when boundaries lo/hi cross
algorithm quicksort(A, lo, hi) is if lo < hi then
$\mathrm{p}:=$ partition(A, lo, hi)
quicksort(A, lo, p-1)
quicksort(A, $p+1$, hi)

Practical Parallel Sorting Setup

- Input array A of size N is already spread across P processors (no need to scatter)

```
PO: A[] = { 84 31 21 28 }
P1: A[] = { 17 20 24 84 }
P2: A[] = { 24 11 31 99 }
P3: A[] = { 13 32 26 75 }
```

- Goal: Numbers sorted across processors. Smallest on P0, next smallest on P1, etc.

```
PO: A[] = { 11 13 17 20 }
P1: A[] = { 21 24 24 26 }
P2: A[] = { 28 31 32 33 }
P3: A[] = { 75 84 84 99 }
```

- Want to use P processors as effectively as possible
- Bulk communication preferred over many small messages

Exercise: Parallel Quicksort

- Find a way to parallelize quicksort
- Hint: The last step is each processor sorting its own data using a serial algorithm. Try to arrange data so this is possible.

START:
P0: A[] = \{llllll 8432128$\}$
P1: $A[]=\left\{\begin{array}{llll}17 & 20 & 25 & 85\end{array}\right\}$
P2: $A[]=\left\{\begin{array}{lllll}24 & 11 & 31 & 99\end{array}\right\}$
P3: $A[]=\left\{\begin{array}{lllll}13 & 32 & 26 & 75\end{array}\right\}$

GOAL
P0: $A[]=\left\{\begin{array}{lllll}11 & 13 & 17 & 20\end{array}\right\}$
P1: A[] $=\left\{\begin{array}{lllll}21 & 24 & 25 & 26\end{array}\right\}$
P2: $A[]=\left\{\begin{array}{lllll}28 & 31 & 32 & 33\end{array}\right\}$
P3: A[] = \{ 75848599 \}

```
SERIAL ALGORITHM
algorithm quicksort(A, lo, hi) is
    if lo < hi then
        p := partition(A, lo, hi)
        quicksort(A, lo, p - 1)
        quicksort(A, p + 1, hi)
algorithm partition(A, lo, hi) is
    pivot := A[hi]
    boundary := lo
    for j := lo to hi - 1 do
        if A[j] <= pivot then
        swap A[boundary] with A[j]
        boundary++
    swap A[i] with A[hi]
    return boundary
```


Parallel Quicksort Ideas 1


```
Partition(pivot=26) on each processor
A[] = { 21 11 84 32 | 17 20 25 85 | 24 28 31 99 | 13 26 32 75 }
Boundary:
Counts: P0: 2 P1: 3 P2: 1 P3: 2
Calculate which data goes where
A[] ={\begin{array}{lllllllllllllllllllllll}{21}&{11}&{84}&{32}&{|}&{17}&{20}&{25}&{85}&{|}&{24}&{28}&{31}&{99}&{1}&{13}&{26}&{32}&{75}\end{array}}
Re-arrange so values <= 26 on P0 and P1, > 26 on P2 and P3
A[] = { 21 11 17 20 | 25 24 13 25 | 84 32 85 28 | 31 99 23 75 }
    P0 P1 P2 P3
Split the world: 2 groups
A[] ={ 21 11 17 20 | 25 24 13 25}|{84 32 85 28 | 31 99 23 75 }
    P0 P1 P2 P3
```


Parallel Quicksort Ideas 2

Each half partitions on different value
P0-P1: Partition(pivot=20)
P2-P3: Partition(pivot=32)

Boundary:
Counts: P0: 3 P1: 1 P2: 2 P3: 2
Calculate which data goes where
 P0 P0 P0 P1 P0 P1 P1 P1 P2 P2 P3 P3 P2 P2 P3 P3
Re-arrange values to proper processors

Split the world: 4 groups

4 groups == 4 processors, all processors sort locally

Done

Issues

- Pivots were cherry-picked to get even distribution
- Generally not possible to do: processors might have uneven portions of the array after partitioning
- Will require
- Must figure out how to communicate which elements to each processor
- Must split the world into smaller groups

Prefix Sums / Scan

int MPI_Scan(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

- Similar to reduction
- Change: only add on values from procs $<=$ proc_id
- op can be sum/max/min/etc.
- In Quicksort, use All-gather to get an array of counts of small values on each proc, follow with Prefix Sum to calculate how much to send to each processor

All-to-All Personalized Communication

All-to-all personalized communication: like every processor scattering to every other processor.
Send Buffer
data \longrightarrow

A_{0}	$\mathrm{~B}_{0}$	C_{0}	D_{0}	E_{0}							
$\mathrm{~A}_{1}$	$\mathrm{~B}_{1}$	C_{1}	D_{1}	E_{1}							
$\mathrm{~A}_{2}$	$\mathrm{~B}_{2}$	C_{2}	D_{2}	E_{2}							
∇											
$\mathrm{~A}_{3}$	$\mathrm{~B}_{3}$	C_{3}	D_{3}	E_{3}							
proc											
A_{4}	$\mathrm{~B}_{4}$	C_{4}	D_{4}	E_{4}	\quad	A_{0}	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	
:---	:---	:---	:---	:---	:---	:---					
$\mathrm{~B}_{0}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$							
C_{0}	C_{1}	C_{2}	C_{3}	C_{4}							
D_{0}	D_{1}	D_{2}	D_{3}	D_{4}							
proceive Buffer	E_{0}	E_{1}	E_{2}	E_{3}	E_{4}						

Source: Cornell University Center for Advanced Computing

MPI_Alltoall

- Standard version: every processor gets a slice of sendbuf, same sized data
- Vector version allows different sized slices (appropriate for quicksort)

```
int MPI_Alltoall(
    void *sendbuf, int sendcount, MPI_Datatype sendtype,
    void *recvbuf, int recvcount, MPI_Datatype recvtype,
    MPI_Comm comm);
int MPI_Alltoallv(
    void *sendbuf, int sendcounts[], int sdispls[], MPI_Datatype sendtype,
    void *recvbuf, int recvcounts[], int rdispls[], MPI_Datatype recvtype,
    MPI_Comm comm);
```


Splitting the World

int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm) ;

- comm is the old communicator (start with MPI_COMM_WORLD
- color is which sub-comm to go into
- key establishes rank in new sub-comm, usually proc_id
- newcomm is filled in with a new communicator
- Examine mpi-code/comm-split.c

Ultimate Complexity of Parallel Quicksort

Take a moment to calculate O complexity based on

- N elements
- P processors

