
PThreads in a Nutshell

Chris Kauffman

CS 499: Spring 2016 GMU



Logistics

Today

I POSIX Threads Briefly

Reading

I Grama 7.1-9 (PThreads)
I POSIX Threads

Programming Tutorial

HW4 Upcoming

I Post over the weekend soon
I Due in last week of class
I OpenMP Password Cracking
I PThreads Version
I Exploration of alternative

programming models
I Maybe a sorting routine. . .

https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/


Threaded Programming

I OpenMP provided threads via directives (#pragma omp)
I Thread creation, execution, and cleanup all automated
I PThreads is lower-level, similar to fork() / waitpid() of

IPC programming



Threads vs IPC
You can mix IPC/Threads if you hate yourself enough.

Threads in PThreads Process in IPC
Fast startup Longer startup
Memory shared by default Must share memory explicitly
Little protection between threads Good protection between processes
pthread_create() /join() fork() / waitpid()
Queues, Semaphores, Queues, Semaphores, Shared Mem
Mutexes, CondVars

Source Source

https://www.linuxprogrammingblog.com/threads-and-fork-think-twice-before-using-them
http://www.read.cs.ucla.edu/111/2006fall/notes/lec5
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/3_Processes.html


Thread Creation

#include <pthread.h>
int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

int pthread_join(pthread_t thread, void **retval);

I Start a thread running function start_routine
I attr may be NULL for default attributes
I Pass arguments arg to the function
I Wait for thread to finish, put return in retval



Minimal Example

// Minimal example of starting a pthread, passing a
// parameter to the thread function, then waiting for it to
// finish
#include <pthread.h>
#include <stdio.h>

void *fx(void *param){
int p=(int) param;
p = p*2;
return (void *) p;

}

int main(){
pthread_t thread_1;
pthread_create(&thread_1, NULL, fx, (void *) 42);
int xres;
pthread_join(thread_1, (void **) &xres);
printf("result is: %d\n",xres);
return 0;

}



Compilation

> gcc pthreads_minimal_example.c -lpthread
pthreads_minimal_example.c: In function ’fx’:
pthreads_minimal_example.c:7:9: warning:
cast from pointer to integer of different
size [-Wpointer-to-int-cast]

int p=(int) param;
^

pthreads_minimal_example.c:9:10: warning:
cast to pointer from integer of different
size [-Wint-to-pointer-cast]

return (void *) p;
^

> a.out
result is: 84



Things to Ask

I How much compiler support do you get with pthreads?
I How does one pass multiple arguments to a function?
I What does the parent thread do on creating a child thread?
I If multiple children are spawned, which execute?



Exercise: A Slice of the Pi
I Recall Monte-Carlo estimation of π
I Serial code: http://cs.gmu.edu/~kauffman/cs499/picalc.c
I Convert serial version to use PThreads
I How to determine # of threads, thread id
I What info to communicate threads
I How to accumulate results

main(){
unsigned int rstate = 123456789;
int npoints = atoi(argv[1]);
int total_hits=0;
for (int i = 0; i < npoints; i++) {

double x = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
double y = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
if (x*x + y*y <= 1.0){

total_hits++;
}

}
double pi_est = ((double)total_hits) / npoints * 4.0;

}

http://cs.gmu.edu/~kauffman/cs499/picalc.c


Speedup!

I Recall that this problem is
almost embarassingly parallel

I Very little
communication/coordination
required

I Speedup follows

4-proc desktop

> gcc picalc.c
> time a.out 100000000
npoints: 100000000
hits: 78541355
pi_est: 3.141654

real 2.35
user 2.27
sys 0.00

> gcc pthreads_picalc.c
> time -p a.out 100000000 2
npoints: 100000000
hits: 78539689
pi_est: 3.141588
real 1.36
user 2.53
sys 0.02



Timings on Zeus

zeus-1 [cs499]% gcc pthreads_picalc.c -lpthread -std=c99
zeus-1 [cs499]% time a.out 100000000 1
...

Time (s)
#threads real user

1 3.405 3.340
2 1.728 3.342
3 1.180 3.341
4 0.901 3.340
5 0.736 3.339
6 0.622 3.339
7 0.543 3.340
8 0.483 3.339
9 0.596 3.342

10 0.562 3.341

What kind of speedup are we getting here?



get_thread_id()???
As noted in other answers, pthreads does not define a
platform-independent way to retrieve an integral thread
ID. This answer
http: // stackoverflow. com/ a/ 21206357/ 316487
gives a non-portable way which works on many
BSD-based platforms.
– Bleater on Stack Overflow

// Standard opaque object, non-printable??
pthread_t opaque = pthread_self();

// Non-portable, non-linux
pthread_id_np_t tid = pthread_getthreadid_np();

// Linux only
pid_t tid = syscall( __NR_gettid );
printf("Thread %d reporting for duty\n",tid);

http://stackoverflow.com/a/21206357/316487
http://stackoverflow.com/questions/21091000/how-to-get-thread-id-of-a-pthread-in-linux-c-program


Mutual Exclusion
I POSIX provides mutual exclusion via mutexes (mutices?),

commonly referred to as locks.
I Good for thread synchronization, can also be used in IPC sync

rather than semaphores/message queues

Basic pattern

Crate Lock variable
Initialize Lock
...
Obtain Lock
Execute critical section
Release Lock
...
Destroy Lock

Posix Calls

pthread_mutex_t lock;
pthread_mutex_init(&lock, NULL);
...
pthread_mutex_lock(&lock);
total_hits++;
pthread_mutex_unlock(&lock);
...
pthread_mutex_destroy(&lock);



Picalc with Locks

Adjust code to use global total_hits, protect updates using
locking
https://cs.gmu.edu/~kauffman/cs499/pthreads_picalc.c

https://cs.gmu.edu/~kauffman/cs499/pthreads_picalc.c


Timing with Locks

zeus-1 [cs499]% gcc pthreads_picalc_locking.c -lpthread -std=c99
zeus-1 [cs499]% time -p a.out 100000000 1

Locks Lock-Free
#threads real user sys real user

1 7.05 6.98 0.00 3.405 3.340
2 27.62 22.15 28.73 1.728 3.342
3 25.65 22.60 40.07 1.180 3.341
4 34.32 29.41 94.90 0.901 3.340
5 43.65 33.26 162.76 0.736 3.339
6 41.32 29.15 194.13 0.622 3.339
7 34.66 23.72 197.91 0.543 3.340
8 30.68 20.00 200.10 0.483 3.339
9 29.11 19.21 197.84 0.596 3.342

10 28.49 18.51 197.57 0.562 3.341

Why are these numbers so much worse than the lock-free version?



Locks versus Condition Variables
I POSIX Mutexes use busy waiting - occupy CPU time while

repeatedly trying to acquire the lock: Spin Lock or Polling
I Condition variables allow non-busy waiting

Recall the Semaphore

I Check an integer value
atomically

I Increment / decrement that
value

I If decrementing would drop
below 0, block, wait to be
notified of non-zero value

I Built-in wait queue to notify
blocked processes of changes

I Blocking does not use CPU

CondVar ≈ Wait Queue
I Only the queue part of a

semaphore
// Wait for signals
pthread_cond_wait(cv,mtx);
// Wake up waiting thread
pthread_cond_signal(cv);

I Required: External
variable/variables to indicate
state

I Required: Mutex to control
access to those variables



Picalc with Condvars

int critical_occupied = 0;
pthread_mutex_t critical_mtx;
pthread_cond_t critical_cv;
...;
double x = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
double y = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
if (x*x + y*y <= 1.0){

// Enter the critical section
pthread_mutex_lock(&critical_mtx);
while(critical_occupied){

pthread_cond_wait(&critical_cv, &critical_mtx);
}
critical_occupied = 1;
pthread_mutex_unlock(&critical_mtx);

// Update the state
total_hits++;

// Exit the critical section
critical_occupied = 0;
pthread_cond_signal(&critical_cv);

}



Timings

Condvar Mutex Redux
#Th real user sys real user sys real user

1 9.59 9.53 0.00 7.05 6.98 0.00 3.405 3.340
2 29.73 21.62 29.09 27.62 22.15 28.73 1.728 3.342
3 85.88 62.54 151.82 25.65 22.60 40.07 1.180 3.341
4 96.39 64.24 226.77 34.32 29.41 94.90 0.901 3.340
5 126.69 72.78 368.33 43.65 33.26 162.76 0.736 3.339
6 161.57 79.77 531.09 41.32 29.15 194.13 0.622 3.339
7 178.40 80.26 646.49 34.66 23.72 197.91 0.543 3.340
8 192.38 78.64 759.83 30.68 20.00 200.10 0.483 3.339
9 202.28 78.20 820.12 29.11 19.21 197.84 0.596 3.342

10 211.73 79.41 834.23 28.49 18.51 197.57 0.562 3.341



More Canonical Examples of Condition Variables

I Picalc is ill-suited for either Mutexes or Condition Variables to
control access to the critical section of code.

I More canonical example of condvar is producer/consumer
I Examine pthreads_producer_consumer.c



John’s Solution to Mutex Problems

JohnMillerCards += 5;

I Tried several variants of lock(), trylock() schemes
I Found the following to be the most scalable

if (x*x + y*y > 1.0){
if(pthread_mutex_trylock(&lock) == 0){

total_miss++;
pthread_mutex_unlock(&lock);

}
else{

pthread_yield();
pthread_mutex_lock(&lock);
total_miss++;
pthread_mutex_unlock(&lock);

}
}

I Beats the OpenMP critical version for scaling



Scaling of John’s Solutions



Take-Home

I PThreads provide threaded execution within a single program,
shared memory

I Primary capability: spawn threads starting different functions
I Provide basic coordination mechanisms for mutual exclusion
I Did not cover large swaths of other facilities (message queues,

thread priority and cancellation, etc.) but these exist and
should be investigated should the need arise


