
Evaluating a test automation decision support tool

Kesina Baral
 Computer Science, PhD

George Mason University
Fairfax,USA

kbaral4@gmu.edu

Rasika Mohod
Computer Science, MS

George Mason University
Fairfax,USA

rmohod@gmu.edu

Jennifer Flamm
The MITRE Corporation

McLean,USA
jflamm@mitre.org

Seth Goldrich
The MITRE Corporation

McLean,USA
sgoldrich@mitre.org

Paul Ammann, PhD
Computer Science

George Mason University
Fairfax,USA

pammann@gmu.edu

Abstract— Goldrich and Flamm developed the MITRE
Automated Test Decision Framework (ATDF) to help MITRE
government sponsors (and, via sharing on GitHub, development
organizations in general) move from manually tested legacy
software towards automated test, continuous integration,
continuous deployment, and, ultimately, DevOps. Often such
legacy systems comprise multiple components with manual test
procedures. The objective of the empirical study described in this
paper is to determine whether ATDF usefully ranks components
with respect to Return on Investment (ROI) when introducing
automated tests. ROI is simply the ratio of profit to cost. When
adding automated tests, what will be the profit that these tests
will carry? What is the cost or level of effort to engineer a
sufficient set of automated tests? Our evaluation approach models
ROI using static defect counts identified by SonarLint and
estimated cost to complete testing. We found positive Pearson
correlations between normalized ATDF rankings versus the
normalized rankings of our evaluation approach. We reject the null
hypothesis that there is no correlation between the two rankings.

Keywords—test automation, legacy systems, software
components

I. INTRODUCTION
MITRE developed ATDF [1] to aid project owners and

technical staff in managerial decisions pertaining to the
addition of test automation in a software project with limited
resources. ATDF takes advantage of the fact that many
projects are comprised of components and test automation can
be implemented on a component by component basis. ATDF
takes various system characteristics and software engineering
metrics of components in a system and computes an ordering
of components to automate based on expected ROI from test
automation.

To investigate the validity of ATDF rankings, MITRE
approached George Mason University to develop a validation

approach. This paper reports on the results of that
collaboration. The collaboration evaluated multiple legacy
software projects to measure the consistency of ATDF’s
predicted ROI rankings by component with a model of actual
ROI rankings by component. In a retrospective analysis of a
code base, if test automation increases after some point, what
is the measured value of those tests? What was the level of
effort to engineer automated tests?

We selected a set of open-source projects and divided each
project into components based on the evident structure, e.g.,
Java packages. Projects were filtered to only include those that
displayed an increase in test automation across, at least a
temporal subset of, the historical Software Development Life-
Cycle (SDLC). After identifying the ATDF factors applicable
to such open-source projects, we executed ATDF against the
“before” version of each project, exploiting a limited, but
robust, set of open-source tools to capture the necessary
metrics. The actual ROI is the profit realized by the increase in
test automation between the “before” and “after” versions of
the project codebase. One tangible measure of the profit of
automated software test is improved code quality. We measure
quality with the SonarLint tool [16]. Given the introduction of
automated test to a component, how much did the
corresponding source code quality improve, and what was the
cost borne to realize that quality increase?

A. Contributions
• Adapted ATDF to open source projects.
• Defined evaluation metric based “quality

approach” based on static defect counts as
independent ROI measure.

• Evaluated ATDF with quality approach metric
over seven open source projects.

• Report positive correlations between ATDF
rankings and our quality approach independent
ROI measure.

69

2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)

978-1-7281-0888-9/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSTW.2019.00034

B. Organization of the paper
Section II overviews ATDF and defines its adaptation to

open source projects. Section III defines the methodology.
Section IV describes the data we collected. Section V gives
results. Section VI details threats. Section VII lists related
works. Section VIII concludes the paper.

II. BACKGROUND

A. ATDF Overview
ATDF is an open source decision aid, developed by

MITRE. ATDF is available on GitHub [1], including the tool
itself and a complete description. We provide a summary here.
When resources are constrained, ATDF is used to prioritize
where to apply those resources when adding test automation to
a software project. ATDF works as depicted in Fig. 1. First,
facts regarding the software are fed as input to the ATDF, next
ATDF performs its ROI computations, and finally the test
automation ROI rankings are output.

Fig. 1. ATDF Overview

The inputs provided to ATDF are: (1) a small set of
system-wide characteristics, and (2) a larger set of measurable
factors applied to each software component. The system-wide
characteristics are somewhat subjective in nature, with half of
these characteristics describing the dynamics of the
development team, and the underlying ATDF computations
are only minimally affected by these system-wide
characteristics. Thus, we applied the “neutral” or “neither”
answer for each of these characteristics. Per the larger set of
component factors, ATDF prescribes to only consider those
for which data is available. We applied ATDF in this study,
using the seven empirically measurable characteristics that
could be calculated against open source projects’ source code.
Those characteristics are described in TABLE I.

The output obtained from ATDF is a ranking of
components by expected ROI value. ATDF suggests a
prioritization, or ordering, by components, to introduce
automated tests to maximize benefit within available
resources. As ATDF output is always obtained in terms of
ranking of software components, an assumption here is that

any software project on which ATDF is executed can be
decomposed into mutually exclusive components.

TABLE I. ATDF CHARACTERISTICS FOR OPEN SOURCE

Row# Characteristic Description

1 Test Coverage
Metrics

Test Coverage measures the line or statement test
coverage.

2 Volatility
Volatility is the rate of change over time. This can
include the expected rate, density, and extent of
changes.

3 Modularity
In a modular design, the functionality is divided
into independent, typically small and simple,
pieces or modules.

4 Self-
Descriptiveness

Self-descriptive software provides the naming
constructs, comments, and descriptions in the
code to facilitate the analysis and understanding
of the code.

5 Design
Simplicity

Simplicity relates to the readability and
traceability of the code.

6 Anomaly
Control

Anomaly control measures the sufficiency of the
error handling and exception processing.

7 Independence
Independence implies that the software is not tied
to any specific host environment which would
make it difficult or impossible to migrate, evolve,
or enhance the software.

B. Validation overview
The ATDF is useful if its predictions are an improvement

on the state-of-the-art, which right now is random component
ranking. Therefore, we model ROI as the actual, realized
profit-over-cost and compare ATDF predictions against a
baseline early in the project history, with ROIs measured due
to the automated test increases later in the project history.

III. METHODOLOGY

A. Criteria for open source project selection
The following criteria were applied to project selection:

1. The open source project must be decomposable
into mutually exclusive components. We define
components as pre-existing project division, e.g.,
packages or classes present.

2. The open source project should have a
substantial SDLC history in terms of release
versions to enable us to pinpoint the earliest
release version (Vo), version before significant
test introduction (Vb), version after significant
test introduction (Va) and latest version (Vn) as
shown in Fig. 2.

3. The SDLC of the project should show an
increase in test-code-to-source-code ratio from
earliest release version (Vo) to latest release
version (Vn) of software.

Funding provided by MITRE Innovation Program.

70

4. There must be at least 20% of SDLC history
between Vo and Vb and between Va and Vn,, as
shown in Fig. 3. The SDLC history between Vo
and Vb is used to calculate Characteristic 2,
Volatility, for ATDF. The SDLC history from Va
to Vn supported calculating defect density, a
metric for which we do not report results.

.

Fig. 2. Project Selection Criteria

Fig. 3. Final Sample Project SDLC Behavior

B. Applying ATDF to open source projects
We considered twenty-four open source projects which are

listed in Appendix A, iteratively refining the selection to those
that met the criteria discussed above. The team completed data
collection for seven open source software projects through the
duration of this study.

To execute ATDF against a historical baseline of each
project, each of the factors previously described in TABLE I.
was specifically measured. TABLE II. gives details regarding
the specific measures, calculations and tools that were used to
capture the metrics. Regarding the Test Coverage metric, our
goal was to capture actual test coverage—the percent of the
source code that is covered by the existing automated test code
in the project. That proved to be difficult for some early
project versions given build dependencies on obsolete
versions of compilers and other dependent open source
libraries, so we also collected test-code-to-source-code ratio as
a proxy for test coverage. This proved to be a valid proxy for
ATDF’s test coverage metric, and that discovery is an
ancillary finding of this study.

TABLE II. ATDF CHARACTERISTICS AND METRICS

Row# Characteristic Specific Metric

1 Test Coverage
Metrics

Line coverage percentage collected using
Cobertura tool.

1’ Test Code
Metrics

Git command was used to calculate SLOC and
test LOC

2 Volatility
SLOC changed in all commits, including both
addition and deletion, from Vo to Vb was
collected using git command

3 Modularity
Calculated as ratio of coupling violations to
SLOC. Coupling violation was collected using
pmd tool.

4 Self-
Descriptiveness

Ratio of Javadoc Comments to SLOC. Javadoc
comment was collected using regular
expression.

5 Design
Simplicity

Calculated as mean cyclomatic complexity,
which was collected using CAT Tool.

6 Anomaly
Control

Calculated as ratio of anomaly word count to
SLOC. Anomaly word count was collected
using mgrep scripts for pattern matching.

7 Independence
Calculated as dependency word count per
KSLOC. Dependency word count was collected
using mgrep scripts for pattern matching .

C. Quality Approach to empirical ROI calculation
ATDF predicts relative ROI for automating the testing in

each component. ATDF was applied, using the specific
metrics presented in the previous section. To assess the
validity of ATDF’s rankings, we must evaluate each
component later in the SDLC. How much profit (that is, value
or benefit) was realized by any additional test automation that
was added? What was the cost associated with that additional
test automation?

To define the benefit, consider: how much better is the
software after Va than at or before Vb? Or, what is the delta-
goodness from Vb to Va? For purposes of verifying ATDF,
we define that goodness as software “quality”. Software code
components can be objectively assessed per their quality,
based on the number of statically discovered defects or issues.
We applied a static analysis tool, SonarLint, to identify issues
in each component’s Vb and Vn. The benefit is the reduction in
issue density as discovered by the static analysis tool (We
chose to take measurements at Vn, instead of Va, because that
is consistent with measuring defect density, a metric for which
we gathered data, but for which we do not report results). This
measure is independent of any of the component
characteristics utilized by ATDF.

As ATDF ranks components by predicted ROI, we must
capture the relative cost to engineer a sufficient set of
automated tests for each component. That relative cost is a
factor of size and difficulty. How big is the job to engineer the
test automation for each component at Vb? How difficult or
complex will it be? This size of the job is based on the
volume of source code for which we must write automated
tests (SLOC at Vb), but can be reduced by the amount of test
code already in the baseline at Vb. We use a proxy for the
relative difficulty. Apply an automated test “generator” to Vb,

71

then execute the auto-generated tests. Auto-generated tests are
insufficient as actual test automation artifacts because they
lack a known truth against which to assert correctness. We
assert that the source code coverage that they achieve is a
proxy for this relative difficulty. This study utilized the
EvoSuite [15] tool to generate automated unit tests and
Cobertura [19] to measure coverage.

For each component, relative ROI is measured as:
(Benefit/Cost) * Factor

Benefit = Delta-quality, defined as [total SonarLint
{BLOCKER, CRITICAL or MAJOR} issues at Vn] – [total
SonarLint {BLOCKER, CRITICAL or MAJOR} issues at Vb]
(issues scaled per KSLOC)

Cost = Estimated cost to complete code coverage at Vb
 = [Size] * [Relative Difficulty]
 = [(1 - %Test Coverage (Vb)) * SLOC (Vb)] *

 [1 - % Test Coverage attained by EvoSuite (Vb)]

Factor = Fraction of the Test Cost that was borne from Vb
to Vn, defined as %Test Coverage (Vn) - %Test Coverage (Vb)

We calculated the normalized measures of ROI from the
model and compared it with the normalized rankings from
ATDF using Pearson correlation.

Fig. 4. Validation Approach over SDLC

1) ATDF Evaluation

We collected data for ATDF evaluation at Vb (shown as
solid dot in Fig. 4) and considered software volatility over V0
to Vb period of SDLC (shown as the ellipse in Fig. 4) to get a
historical volatility as of the Vb snapshot in time.

2) Quality Approach for ROI Benefit

We collected data at version Vb and Vn (shown by outlined
dot in Fig. 4). We used SonarLint [16], an open source
platform to perform static analysis of code, which identifies
issues at various levels of severity: blocker, critical, major,
minor and warnings. We used the difference in major, blocker
and critical issues between Vb and Vn as delta-quality value in
the ROI computations. With these calculations, we obtained
ordering of software components in terms of realized ROI
obtained in after-testing period of SDLC, which was
compared with ordering predicted by ATDF tool.

3) ROI Cost Calculation

We collected SLOC counts for all components via
command-line git, generated tests for the components via
EvoSuite [15], and measured coverage achieved by those
EvoSuite-generated tests via Cobertura [19] at Vb. Where
EvoSuite test generation failed for a given component at Vb,
we used the average of the project’s other components’
EvoSuite-generated-test coverage for the component. Where
EvoSuite test generation failed across an entire project at Vb,
the relative Cost calculation for each component is reduced to
the SLOC count only.

IV. DESCRIPTION OF DATA

A. Sample Project - OpenNLP
OpenNLP [14] is decomposable into several components

based on its Java package structure. Therefore, it satisfies the
first criteria in Section III.A. It also has substantial release
history and hence, meets the second criteria. Among the
components, we considered the four that are present
throughout the SDLC. Other components of OpenNLP were
not considered because they weren’t available for data
collection at all the necessary points in the revision history.
The project has a rise in %test code from 13% at Vo to 18% at
Vn as presented in Fig. 5. This satisfies the third criteria.

Fig. 5. OpenNLP Test Code Distribution

To satisfy the fourth criterion in III.A we chose release
versions opennlp-1.7.1 as Vb and opennlp-1.8.0 as Va.
opennlp-1.7.0 is the earliest version that would successfully
compile, and thus it was set as initial version (Vo), while the
final version (Vn) was opennlp-1.8.4. Fig. 6 shows these
release versions with their test LOC.

72

Fig. 6. OpenNLP Test Code Analysis

We computed ATDF at Vb and applied quality model of
ROI to Vb Vn. The ROI predicted by ATDF, and that
measured by the quality model, are both normalized to a range
of [1,100], given in Fig. 7.

Fig. 7. OpenNLP Rankings from ATDF tool and Quality Approach for ROI

V. RESULT
We analyzed ATDF ranking with respect to the quality

approach to independently calculate ROI. The more similar
the ATDF rankings are to the independent ROI rankings, the
more valuable ATDF is. Hence, correlation between the
rankings is a useful metric to judge the validity of ATDF.
Because the normalized values provide information beyond
simple ordinal rankings, Pearson is an appropriate correlation
measure.

For some components, EvoSuite test generation failed,
largely due to dependence on obsolete versions of other open
source libraries and obsolete compiler versions. As described
in III.C.3) ROI Cost Calculation, the cost calculation for the
Quality Approach ROI measure was modified in these cases to
use either: the average coverage for the projects’ other
components when that coverage data was available, or to not
use coverage at all when unavailable.

As shown in Appendix B, ATDF correlations with the
quality approach varied widely within each project (-0.76 to
0.8). But this analysis includes components with little or
negative change in test code and hence is not suitable for
drawing conclusions. The number of components within each
project is also too small for the results to be significant.

To remedy these issues, we analyzed correlations across
all projects with respect to the amount of increase in test code
during their SDLC. Note again that both ATDF rankings and
Quality Approach ROI rankings are normalized to a [1,100]
range, which enables comparison across all projects. This
analysis is shown in Fig. 8.

Fig. 8. Pearson Correlation vs Change in Test Code

The x-axis in Fig. 8 shows the change in test code and the
number of components corresponding to the change. The y-
axis shows Pearson correlation in orange and p-value in blue.
For example, at the point on the x-axis “% test code
>=10(ct=18)”, the chart shows results for the 18 components
whose change in test-to-source-code ratio was greater than or
equal to 10%–Pearson value is 0.66 with p-value 0.003. To
assess the impact of the missing EvoSuite coverage values, we
computed all results with the simplified calculation for ROI
Cost which depends only on SLOC. For that same data point,
“% test code >=10(ct=18)”, the resulting Pearson correlation
reduces from 0.66 to 0.58 with 95% confidence. Thus, the
missing EvoSuite coverages do not pose a threat to validity;
the lower correlation is unsurprising given the lower fidelity
cost calculation.

As shown in Fig. 8, the p-values are below 0.01 for
increased test code ratios of greater than or equal to 5% or
10%. For smaller values of test code change, the Pearson
correlation is simply too low for significance. For higher
values, the number of components is too low for significance.
However, for the two values where p-value is less than 0.01
we can reject the null hypothesis at 99% confidence level that
ATDF and quality approach are independent. Hence, we
conclude that the quality approach provides a positive
evaluation of ATDF.

VI. THREATS
We collected data on only seven open source projects.

Larger data sets would be required to reduce the uncertainty
inherent in this noisy data.

In relating current version to prior version, there is a threat
that the history may not be linear. We used TortoiseGit [18] to
analyze version history and chose a linear path leading to the
current version. Since the CAT [23] tool requires Java 8, it
may undercount on project versions using Java 7 or older. We
don’t believe the undercounts introduced a bias between
components of same version. In our experiment, we restricted
our attention to maven-based projects, which may have
introduced a bias.

73

To maintain independence between ATDF and our
evaluation metric we did not use a standard measure (e.g.,
cyclomatic complexity) to estimate the difficulty of
completing test automation. Instead we used the coverage
achieved by the test code generated by EvoSuite.

Cobertura couldn’t always produce coverage value due to
Java versioning and compilation issues, hence in our
experiment we used percentage of test code as a proxy for test
coverage. To evaluate the consequence of this decision, we
compared ATDF ranking with test code vs ATDF ranking
with test coverage. For projects where test coverage collection
is complete, the correlation is above 0.91. These strong
correlations provide evidence that test code is a good proxy
for test coverage when applying ATDF to open source
projects. The quality approach metric has not been separately
validated, either with or without the EvoSuite component.

VII. RELATED WORK
Garousi et al. [2] suggest qualitative factors to drive the

decisions regarding when and what to automate at the test case
level. Couto et al. [3] proposed a tool to investigate the
relationship between internal quality metrics and bugs. Their
tool, BugMaps-Granger, analyzed source code properties that
are more likely to cause bugs. Similarly, Yamashita et al. [4]
examined the relation of size and complexity of code to its
bugginess. Li et al. [5] showed how the extent of modification
of a source code file has a positive correlation with its defect
density. Test automation has also been used to measure
software quality in many instances. Bach et al. [6] analyzed
real bug-reports and bug-fixes and found a strong signal that
test-covered code contains smaller number of future bugs
compared to code uncovered by tests. A strong relationship
between test coverage and field related problems was found
by Mockus et al. [7]. Through their multi-case study, Mockus
et al. observed that higher test coverage leads to detection of
more flaws and fixing them leads to better software quality.
Similar test code and defect density relationship was found in
research by Athanasiou et al. [8]. Their study introduced a
model which assessed test code quality by combining three
main benefits of automated testing: code completeness,
effectiveness, and maintainability. Their results revealed that
good test code quality positively influences throughput and
defect handling performance. Gren et al. [9] tried to find a
correlation between unit testing and number of defects in the
codebase. Their research further aims to help developers in
understanding how to best allocate their resources to testing.
Swart [10] and his research group measured the effect of
reengineering and unit testing code on the number of fixed
bugs. They compared the predicted and actual number of bugs
for a component, after reengineering and unit testing it. They
predicted the bug-proneness of components, and successfully
ranked them by feasibility. Their results indicated that the
number of bug fixes decreases after a bug-prone component
has been reengineered and covered with unit tests. Another
experiment was conducted by Tengeri et al. [11] on four open
source systems’ test suites, to compare them with respect to
code coverage and mutation score. Tengeri et al. demonstrated
situations where code coverage and mutation score are
sufficient indicators of expected defect density. The relation to

our work is that ATDF relies in part on standard software
metrics and our evaluation is in terms of defect. Hence, we
expect to see the relationship between the two.

There has been research in identifying and categorizing
defects through code changes and commit history logs.
GitcProc a tool developed by Casalnuovo et al. [13] is based
on regular expressions and source code blocks, which
analyzes GitHub [17] project history, including fine-grained
source code information and development time bug fixes. This
tool searches for bug-fix related words such as error, bug,
defect, and fix within the commit message to classify it as a
bug-fix commit. We implemented a similar keyword-based
approach for analyzing commit logs when computing the two
ATDF metrics: Self-Descriptiveness and Anomaly Control.

Hoffman’s research [12] measured computing cost and
benefits from test automation. His research described some
financial, organizational, and test effectiveness impacts
observed when test automation is introduced in the system.

We examined research studies to extract different open
source projects used in their case studies to assess defect
density and other software metrics. All but one of the 24
projects that we considered were selected from references.

VIII. CONCLUSION
The purpose of this paper is to evaluate ATDF for ranking

legacy components versus expected ROI from test automation.
We used a set of open source projects and defined ROI as lint
style defect count vs cost of test automation.

We calculated Pearson correlation between ATDF
rankings and our independent ROI measure. We found
moderate to strong correlation between the ATDF and the
quality approach ROI measure, for those components with
increase in test code greater than ten percent. Hence, the
quality approach supports the ROI calculations produced by
ATDF for the studied projects.

REFERENCES
[1] ATDF, https://github.com/mitre/atdf/
[2] V. Garousi and M.V. Mäntylä, When and what to automate in software

testing? A multi-vocal literature review, Information and Software
Technology, 2016.

[3] Cesar Couto, Marco Tulio Valente, Pedro Pires, Andre Hora, Nicolas
Anquetil and Roberto S Bigonha, BugMaps-Granger: a tool for
visualizing and predicting bugs using Granger causality tests, Journal of
Software Engineering Research and Development, 2014.

[4] Kazuhiro Yamashita, Changyun Huang, Meiyappan Nagappan,
Yasutaka Kamei, Audris Mockus, Ahmed E. Hassa, and Naoyasu
Ubayashi, Thresholds for Size and Complexity Metrics: A Case Study
from the Perspective of Defect Density, IEEE International Conference
on Software Quality, Reliability and Security, 2016.

[5] Zengyang Li, Peng Liang, Bing Li, Relating Alternate Modifications to
Defect Density in Software Development, IEEE/ACM 39th IEEE
International Conference on Software Engineering Companion, 2017.

[6] Thomas Bach, Artur Andrzejak, Ralf Pannemans, and David Lo, The
Impact of Coverage on Bug Density in a Large Industrial Software
Project, ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2017.

[7] Audris Mockus, Nachiappan Nagappan, and Trung T. Dinh-Trong, Test
Coverage and Post-Verification Defects: A Multiple Case Study, Third

74

IEEE International Symposium on Empirical Software Engineering and
Measurement, 2009.

[8] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser Member, and Andy
Zaidman, Test Code Quality and Its Relation to Issue Handling
Performance, IEEE Transactions on Software Engineering, 2000.

[9] Lucas Gren and Vard Antinyan, On the Relation Between Unit Testing
and Code Quality, IEEE 43rd Euromicro Conference on Software
Engineering and Advanced Applications. 2017.

[10] Jerry Swart, Selecting Bug-prone Components to Study the Effectiveness
of Reengineering and Unit Testing, Masters Thesis - Software
Engineering Research Group, Delft University of Technology

[11] Dávid Tengeri, László Vidács, Árpád Beszédes, Judit Jász, Gergõ
Balogh, Béla Vancsics, and Tibor Gyimóthy, Relating Code Coverage,
Mutation Score and Test Suite Reducibility to Defect Density, IEEE
International Conference on Software Testing, Verification and
Validation Workshops, 2016.

[12] Douglas Hoffman, Cost Benefits Analysis of Test Automation, Software
Quality Methods, LLC, 1999.

[13] Casey Casalnuovo, Yagnik Suchak, Baishakhi Ray, and Cindy Rubio-
González, GitcProc: A Tool for Processing and Classifying GitHub
Commits, In Proceedings of 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Santa Barbara, CA,
USA, (ISSTA’17-DEMOS), 2017.

[14] OpenNLP, https://github.com/apache/opennlp
[15] EvoSuite, http://www.evosuite.org/
[16] SonarLint, https://www.sonarlint.org/
[17] GitHub, https://github.com/
[18] TortoiseGit, https://tortoisegit.org/
[19] Cobertura, http://cobertura.github.io/cobertura/
[20] F. Thung, X. D. Le and D. Lo, "Active Semi-supervised Defect

Categorization," 2015 IEEE 23rd International Conference on Program
Comprehension, Florence, 2015, pp. 60-70.

[21] J. Flisar and V. Podgorelec, "Enhanced Feature Selection Using Word
Embeddings for Self-Admitted Technical Debt Identification," 2018
44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Prague, 2018, pp. 230-233.

[22] P. S. Kochhar, F. Thung, D. Lo and J. Lawall, "An Empirical Study on
the Adequacy of Testing in Open Source Projects," 2014 21st Asia-
Pacific Software Engineering Conference, Jeju, 2014, pp. 215-222.

[23] CAT Tool https://www.mitre.org/research/technology-
transfer/technology-licensing/software-quality-assurance-evaluation-
sqae

[24] Greg Barish, Matthew Michelson, and Steven Minton, Mining commit
log messages to identify risky code, Int'l Conf. Artificial Intelligence,
2017.

[25] J. Flisar and V. Podgorelec, "Enhanced Feature Selection Using Word
Embeddings for Self-Admitted Technical Debt Identification," 2018
44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Prague, 2018, pp. 230-233.

[26] Defects4j https://github.com/rjust/defects4j

75

Appendix
 A. Projects Considered.
 Project Source URL

1. Accumulo [5] https://accumulo.apache.org/

2. Closure-
compiler

[26] https://developers.google.com/clos
ure/compiler/

3. Cobertura [6][7] http://cobertura.github.io/cobertura/

4. Commons
Lang

[7] https://commons.apache.org/proper
/commons-lang/

5. Commons
Math

[26] http://commons.apache.org/proper/
commons-math/

6. Eclipse
JDT Core

[2] https://www.eclipse.org/jdt/core/

7. Guava [21] https://github.com/google/guava

8. Hadoop [22] https://hadoop.apache.org/

9. Jacoco [22] https://www.eclemma.org/jacoco/

10. Jfreechart [26] http://www.jfree.org/jfreechart/

11. JodaTime [26] https://www.joda.org/joda-time/

12. Junit4 [6][7] https://junit.org/junit4/

13. Mahout

[20] https://github.com/apache/mahout

14. Mapdb [11] https://github.com/jankotek/mapdb

15. Mockito [26] https://site.mockito.org/

16. Netty [11] https://github.com/netty/netty

17. OpenNLP [20] https://github.com/apache/opennlp

18. Orientdb [11] https://github.com/orientechnologie
s/orientdb

19. Oryx [11] https://github.com/OryxProject/ory
x

20. Spring
Boot

[25] https://spring.io/projects/spring-
boot

21. ZXing [9] https://github.com/zxing/zxing

22. Tomcat [24] http://tomcat.apache.org/

23. OpenMQ - https://javaee.github.io/openmq/

24. Lucene [20] http://lucene.apache.org/

B. Data

76

