
Evaluating a test automation decision support tool 
 

Kesina Baral 
       Computer Science, PhD                                           

George Mason University             
Fairfax,USA                         

kbaral4@gmu.edu  

Rasika Mohod 
Computer Science, MS                          

George Mason University              
Fairfax,USA                        

rmohod@gmu.edu 

Jennifer Flamm                                          
The MITRE Corporation                                   

McLean,USA                        
jflamm@mitre.org

 

 

 

 

 

 

Seth Goldrich 
The MITRE Corporation                                   

McLean,USA                        
sgoldrich@mitre.org 

 

 

Paul Ammann, PhD 
Computer Science              

George Mason University 
Fairfax,USA  

pammann@gmu.edu 

 

 

 

 

 

 

 

Abstract— Goldrich and Flamm developed the MITRE 
Automated Test Decision Framework (ATDF) to help MITRE 
government sponsors (and, via sharing on GitHub, development 
organizations in general) move from manually tested legacy 
software towards automated test, continuous integration, 
continuous deployment, and, ultimately, DevOps. Often such 
legacy systems comprise multiple components with manual test 
procedures. The objective of the empirical study described in this 
paper is to determine whether ATDF usefully ranks components 
with respect to Return on Investment (ROI) when introducing 
automated tests. ROI is simply the ratio of profit to cost. When 
adding automated tests, what will be the profit that these tests 
will carry?  What is the cost or level of effort to engineer a 
sufficient set of automated tests? Our evaluation approach models 
ROI using static defect counts identified by SonarLint and 
estimated cost to complete testing. We found positive Pearson 
correlations between normalized ATDF rankings versus the 
normalized rankings of our evaluation approach. We reject the null 
hypothesis that there is no correlation between the two rankings. 

 

Keywords—test automation, legacy systems, software 
components  

I. INTRODUCTION  
MITRE developed ATDF [1] to aid project owners and 

technical staff in managerial decisions pertaining to the 
addition of test automation in a software project with limited 
resources. ATDF takes advantage of the fact that many 
projects are comprised of components and test automation can 
be implemented on a component by component basis. ATDF 
takes various system characteristics and software engineering 
metrics of components in a system and computes an ordering 
of components to automate based on expected ROI from test 
automation. 

To investigate the validity of ATDF rankings, MITRE 
approached George Mason University to develop a validation 

approach. This paper reports on the results of that 
collaboration. The collaboration evaluated multiple legacy 
software projects to measure the consistency of ATDF’s 
predicted ROI rankings by component with a model of actual 
ROI rankings by component. In a retrospective analysis of a 
code base, if test automation increases after some point, what 
is the measured value of those tests?  What was the level of 
effort to engineer automated tests?  

We selected a set of open-source projects and divided each 
project into components based on the evident structure, e.g., 
Java packages. Projects were filtered to only include those that 
displayed an increase in test automation across, at least a 
temporal subset of, the historical Software Development Life-
Cycle (SDLC). After identifying the ATDF factors applicable 
to such open-source projects, we executed ATDF against the 
“before” version of each project, exploiting a limited, but 
robust, set of open-source tools to capture the necessary 
metrics. The actual ROI is the profit realized by the increase in 
test automation between the “before” and “after” versions of 
the project codebase. One tangible measure of the profit of 
automated software test is improved code quality. We measure 
quality with the SonarLint tool [16]. Given the introduction of 
automated test to a component, how much did the 
corresponding source code quality improve, and what was the 
cost borne to realize that quality increase? 

A.  Contributions 
• Adapted ATDF to open source projects. 
• Defined evaluation metric based “quality 

approach” based on static defect counts as 
independent ROI measure. 

• Evaluated ATDF with quality approach metric 
over seven open source projects. 

• Report positive correlations between ATDF 
rankings and our quality approach independent 
ROI measure. 
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B. Organization of the paper 
Section II overviews ATDF and defines its adaptation to 

open source projects. Section III defines the methodology. 
Section IV describes the data we collected. Section V gives 
results. Section VI details threats. Section VII lists related 
works. Section VIII concludes the paper. 

II. BACKGROUND 

A. ATDF Overview 
ATDF is an open source decision aid, developed by 

MITRE. ATDF is available on GitHub [1], including the tool 
itself and a complete description. We provide a summary here. 
When resources are constrained, ATDF is used to prioritize 
where to apply those resources when adding test automation to 
a software project. ATDF works as depicted in Fig. 1. First, 
facts regarding the software are fed as input to the ATDF, next 
ATDF performs its ROI computations, and finally the test 
automation ROI rankings are output.  

 

Fig. 1.  ATDF Overview 

The inputs provided to ATDF are: (1) a small set of 
system-wide characteristics, and (2) a larger set of measurable 
factors applied to each software component. The system-wide 
characteristics are somewhat subjective in nature, with half of 
these characteristics describing the dynamics of the 
development team, and the underlying ATDF computations 
are only minimally affected by these system-wide 
characteristics. Thus, we applied the “neutral” or “neither” 
answer for each of these characteristics. Per the larger set of 
component factors, ATDF prescribes to only consider those 
for which data is available. We applied ATDF in this study, 
using the seven empirically measurable characteristics that 
could be calculated against open source projects’ source code. 
Those characteristics are described in TABLE I.   

The output obtained from ATDF is a ranking of 
components by expected ROI value. ATDF suggests a 
prioritization, or ordering, by components, to introduce 
automated tests to maximize benefit within available 
resources. As ATDF output is always obtained in terms of 
ranking of software components, an assumption here is that 

any software project on which ATDF is executed can be 
decomposed into mutually exclusive components. 

 

 

TABLE I.  ATDF CHARACTERISTICS FOR OPEN SOURCE  

Row# Characteristic Description 

1 Test Coverage 
Metrics 

Test Coverage measures the line or statement test 
coverage. 

2 Volatility  
Volatility is the rate of change over time. This can 
include the expected rate, density, and extent of 
changes. 

3 Modularity 
In a modular design, the functionality is divided 
into independent, typically small and simple, 
pieces or modules. 

4 Self-
Descriptiveness 

Self-descriptive software provides the naming 
constructs, comments, and descriptions in the 
code to facilitate the analysis and understanding 
of the code. 

5 Design 
Simplicity 

Simplicity relates to the readability and 
traceability of the code. 

6 Anomaly 
Control 

Anomaly control measures the sufficiency of the 
error handling and exception processing. 

7 Independence 
Independence implies that the software is not tied 
to any specific host environment which would 
make it difficult or impossible to migrate, evolve, 
or enhance the software. 

B. Validation overview 
The ATDF is useful if its predictions are an improvement 

on the state-of-the-art, which right now is random component 
ranking. Therefore, we model ROI as the actual, realized 
profit-over-cost and compare ATDF predictions against a 
baseline early in the project history, with ROIs measured due 
to the automated test increases later in the project history. 

III. METHODOLOGY 

A. Criteria for open source project selection 
The following criteria were applied to project selection: 

1. The open source project must be decomposable 
into mutually exclusive components. We define 
components as pre-existing project division, e.g., 
packages or classes present. 

2. The open source project should have a 
substantial SDLC history in terms of release 
versions to enable us to pinpoint the earliest 
release version (Vo), version before significant 
test introduction (Vb), version after significant 
test introduction (Va) and latest version (Vn) as 
shown in Fig. 2. 

3. The SDLC of the project should show an 
increase in test-code-to-source-code ratio from 
earliest release version (Vo) to latest release 
version (Vn) of software.  

Funding provided by MITRE Innovation Program.
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4. There must be at least 20% of SDLC history 
between Vo and Vb and between Va and Vn,, as 
shown in Fig. 3. The SDLC history between Vo 
and Vb is used to calculate Characteristic 2, 
Volatility, for ATDF. The SDLC history from Va 
to Vn supported calculating defect density, a 
metric for which we do not report results. 

 

. 

 

 
Fig. 2. Project Selection Criteria 

 

 

Fig. 3. Final Sample Project SDLC Behavior 

B. Applying ATDF to open source projects 
We considered twenty-four open source projects which are 

listed in Appendix A, iteratively refining the selection to those 
that met the criteria discussed above. The team completed data 
collection for seven open source software projects through the 
duration of this study.  

To execute ATDF against a historical baseline of each 
project, each of the factors previously described in TABLE I.  
was specifically measured. TABLE II. gives details regarding 
the specific measures, calculations and tools that were used to 
capture the metrics. Regarding the Test Coverage metric, our 
goal was to capture actual test coverage—the percent of the 
source code that is covered by the existing automated test code 
in the project. That proved to be difficult for some early 
project versions given build dependencies on obsolete 
versions of compilers and other dependent open source 
libraries, so we also collected test-code-to-source-code ratio as 
a proxy for test coverage. This proved to be a valid proxy for 
ATDF’s test coverage metric, and that discovery is an 
ancillary finding of this study. 

TABLE II.  ATDF CHARACTERISTICS AND METRICS 

Row# Characteristic Specific Metric 

1 Test Coverage 
Metrics 

Line coverage percentage collected using 
Cobertura tool. 

1’ Test Code 
Metrics 

Git command was used to calculate SLOC and 
test LOC 

2 Volatility  
SLOC changed in all commits, including both 
addition and deletion, from Vo to Vb was 
collected using git command 

3 Modularity 
Calculated as ratio of coupling violations to 
SLOC. Coupling violation was collected using 
pmd tool. 

4 Self-
Descriptiveness 

Ratio of Javadoc Comments to SLOC. Javadoc 
comment was collected using regular 
expression. 

5 Design 
Simplicity 

Calculated as mean cyclomatic complexity, 
which was collected using CAT Tool. 

6 Anomaly 
Control 

Calculated as ratio of anomaly word count to 
SLOC. Anomaly word count was collected 
using mgrep scripts for pattern matching. 

7 Independence 
Calculated as dependency word count per 
KSLOC. Dependency word count was collected 
using mgrep scripts for pattern matching . 

 

C. Quality Approach to empirical ROI calculation 
ATDF predicts relative ROI for automating the testing in 

each component. ATDF was applied, using the specific 
metrics presented in the previous section. To assess the 
validity of ATDF’s rankings, we must evaluate each 
component later in the SDLC. How much profit (that is, value 
or benefit) was realized by any additional test automation that 
was added?  What was the cost associated with that additional 
test automation? 

To define the benefit, consider: how much better is the 
software after Va than at or before Vb?  Or, what is the delta-
goodness from Vb to Va?  For purposes of verifying ATDF, 
we define that goodness as software “quality”. Software code 
components can be objectively assessed per their quality, 
based on the number of statically discovered defects or issues. 
We applied a static analysis tool, SonarLint, to identify issues 
in each component’s Vb and Vn. The benefit is the reduction in 
issue density as discovered by the static analysis tool (We 
chose to take measurements at Vn, instead of Va, because that 
is consistent with measuring defect density, a metric for which 
we gathered data, but for which we do not report results). This 
measure is independent of any of the component 
characteristics utilized by ATDF. 

As ATDF ranks components by predicted ROI, we must 
capture the relative cost to engineer a sufficient set of 
automated tests for each component. That relative cost is a 
factor of size and difficulty. How big is the job to engineer the 
test automation for each component at Vb?  How difficult or 
complex will it be?  This size of the job is based on the 
volume of source code for which we must write automated 
tests (SLOC at Vb), but can be reduced by the amount of test 
code already in the baseline at Vb. We use a proxy for the 
relative difficulty. Apply an automated test “generator” to Vb, 
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then execute the auto-generated tests. Auto-generated tests are 
insufficient as actual test automation artifacts because they 
lack a known truth against which to assert correctness. We 
assert that the source code coverage that they achieve is a 
proxy for this relative difficulty. This study utilized the 
EvoSuite [15] tool to generate automated unit tests and 
Cobertura [19] to measure coverage. 

For each component, relative ROI is measured as: 
(Benefit/Cost) * Factor   

Benefit = Delta-quality, defined as [total SonarLint 
{BLOCKER, CRITICAL or MAJOR} issues at Vn] – [total 
SonarLint {BLOCKER, CRITICAL or MAJOR} issues at Vb]  
(issues scaled per KSLOC) 

Cost = Estimated cost to complete code coverage at Vb  
        = [Size] * [Relative Difficulty] 
        = [(1 - %Test Coverage (Vb)) * SLOC (Vb)] *           

   [1 - % Test Coverage attained by EvoSuite (Vb)] 

Factor = Fraction of the Test Cost that was borne from Vb 
to Vn, defined as %Test Coverage (Vn) - %Test Coverage (Vb)    

We calculated the normalized measures of ROI from the 
model and compared it with the normalized rankings from 
ATDF using Pearson correlation. 

 

Fig. 4. Validation Approach over SDLC 

1) ATDF Evaluation  

We collected data for ATDF evaluation at Vb (shown as 
solid dot in  Fig. 4) and considered software volatility over V0 
to Vb period of SDLC (shown as the ellipse in Fig. 4) to get a 
historical volatility as of the Vb snapshot in time.  

2) Quality Approach for ROI Benefit 

We collected data at version Vb and Vn (shown by outlined 
dot in Fig. 4). We used SonarLint [16], an open source 
platform to perform static analysis of code, which identifies 
issues at various levels of severity: blocker, critical, major, 
minor and warnings. We used the difference in major, blocker 
and critical issues between Vb and Vn as delta-quality value in 
the ROI computations. With these calculations, we obtained 
ordering of software components in terms of realized ROI 
obtained in after-testing period of SDLC, which was 
compared with ordering predicted by ATDF tool. 

3) ROI Cost Calculation 

We collected SLOC counts for all components via 
command-line git, generated tests for the components via 
EvoSuite [15], and measured coverage achieved by those 
EvoSuite-generated tests via Cobertura [19] at Vb. Where 
EvoSuite test generation failed for a given component at Vb, 
we used the average of the project’s other components’ 
EvoSuite-generated-test coverage for the component. Where 
EvoSuite test generation failed across an entire project at Vb, 
the relative Cost calculation for each component is reduced to 
the SLOC count only. 

IV. DESCRIPTION OF DATA 

A. Sample Project  - OpenNLP  
OpenNLP [14] is decomposable into several components 

based on its Java package structure. Therefore, it satisfies the 
first criteria in Section III.A. It also has substantial release  
history and hence, meets the second criteria. Among the 
components, we considered the four that are present 
throughout the SDLC. Other components of OpenNLP were 
not considered because they weren’t available for data 
collection at all the necessary points in the revision history.  
The project has a rise in %test code from 13% at Vo to 18% at 
Vn as presented in Fig. 5. This satisfies the third criteria.  

 
Fig. 5. OpenNLP Test Code Distribution 

 

To satisfy the fourth criterion in III.A we chose release 
versions opennlp-1.7.1 as Vb and opennlp-1.8.0 as Va. 
opennlp-1.7.0 is the earliest version that would successfully 
compile, and thus it was set as initial version (Vo), while the 
final version (Vn) was opennlp-1.8.4. Fig. 6 shows these 
release versions with their test LOC. 
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Fig. 6. OpenNLP Test Code Analysis 

We computed ATDF at Vb and applied quality model of 
ROI to Vb Vn. The ROI predicted by ATDF, and that 
measured by the quality model, are both normalized to a range 
of [1,100], given in Fig. 7.  

 
Fig. 7.  OpenNLP Rankings from ATDF tool and Quality Approach for ROI 

V. RESULT 
We analyzed ATDF ranking with respect to the quality 

approach to independently calculate ROI. The more similar 
the ATDF rankings are to the independent ROI rankings, the 
more valuable ATDF is. Hence, correlation between the 
rankings is a useful metric to judge the validity of ATDF. 
Because the normalized values provide information beyond 
simple ordinal rankings, Pearson is an appropriate correlation 
measure. 

For some components, EvoSuite test generation failed, 
largely due to dependence on obsolete versions of other open 
source libraries and obsolete compiler versions. As described 
in III.C.3) ROI Cost Calculation, the cost calculation for the 
Quality Approach ROI measure was modified in these cases to 
use either: the average coverage for the projects’ other 
components when that coverage data was available, or to not 
use coverage at all when unavailable. 

As shown in Appendix B, ATDF correlations with the 
quality approach varied widely within each project (-0.76 to 
0.8). But this analysis includes components with little or 
negative change in test code and hence is not suitable for 
drawing conclusions. The number of components within each 
project is also too small for the results to be significant. 

To remedy these issues, we analyzed correlations across 
all projects with respect to the amount of increase in test code 
during their SDLC. Note again that both ATDF rankings and 
Quality Approach ROI rankings are normalized to a [1,100] 
range, which enables comparison across all projects. This 
analysis is shown in Fig. 8. 

 
Fig. 8. Pearson Correlation vs Change in Test Code 

The x-axis in Fig. 8 shows the change in test code and the 
number of components corresponding to the change. The y-
axis shows Pearson correlation in orange and p-value in blue. 
For example, at the point on the x-axis “% test code 
>=10(ct=18)”, the chart shows results for the 18 components 
whose change in test-to-source-code ratio was greater than or 
equal to 10%–Pearson value is 0.66 with p-value 0.003. To 
assess the impact of the missing EvoSuite coverage values, we 
computed all results with the simplified calculation for ROI 
Cost which depends only on SLOC. For that same data point, 
“% test code >=10(ct=18)”, the resulting Pearson correlation 
reduces from 0.66 to 0.58 with 95% confidence. Thus, the 
missing EvoSuite coverages do not pose a threat to validity; 
the lower correlation is unsurprising given the lower fidelity 
cost calculation.  

As shown in Fig. 8, the p-values are below 0.01 for 
increased test code ratios of greater than or equal to 5% or 
10%. For smaller values of test code change, the Pearson 
correlation is simply too low for significance. For higher 
values, the number of components is too low for significance. 
However, for the two values where p-value is less than 0.01 
we can reject the null hypothesis at 99% confidence level that 
ATDF and quality approach are independent. Hence, we 
conclude that the quality approach provides a positive 
evaluation of ATDF.  

VI. THREATS 
We collected data on only seven open source projects. 

Larger data sets would be required to reduce the uncertainty 
inherent in this noisy data.  

In relating current version to prior version, there is a threat 
that the history may not be linear. We used TortoiseGit [18] to 
analyze version history and chose a linear path leading to the 
current version. Since the CAT [23] tool requires Java 8, it 
may undercount on project versions using Java 7 or older. We 
don’t believe the undercounts introduced a bias between 
components of same version. In our experiment, we restricted 
our attention to maven-based projects, which may have 
introduced a bias. 
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To maintain independence between ATDF and our 
evaluation metric we did not use a standard measure (e.g., 
cyclomatic complexity) to estimate the difficulty of 
completing test automation. Instead we used the coverage 
achieved by the test code generated by EvoSuite.  

Cobertura couldn’t always produce coverage value due to 
Java versioning and compilation issues, hence in our 
experiment we used percentage of test code as a proxy for test 
coverage. To evaluate the consequence of this decision, we 
compared ATDF ranking with test code vs ATDF ranking 
with test coverage. For projects where test coverage collection 
is complete, the correlation is above 0.91. These strong 
correlations provide evidence that test code is a good proxy 
for test coverage when applying ATDF to open source 
projects. The quality approach metric has not been separately 
validated, either with or without the EvoSuite component. 

VII. RELATED WORK 
Garousi et al. [2] suggest qualitative factors to drive the 

decisions regarding when and what to automate at the test case 
level. Couto et al. [3] proposed a tool to investigate the 
relationship between internal quality metrics and bugs. Their 
tool, BugMaps-Granger, analyzed source code properties that 
are more likely to cause bugs. Similarly, Yamashita et al. [4] 
examined the relation of size and complexity of code to its 
bugginess. Li et al. [5] showed how the extent of modification 
of a source code file has a positive correlation with its defect 
density. Test automation has also been used to measure 
software quality in many instances. Bach et al. [6] analyzed 
real bug-reports and bug-fixes and found a strong signal that 
test-covered code contains smaller number of future bugs 
compared to code uncovered by tests. A strong relationship 
between test coverage and field related problems was found 
by Mockus et al. [7]. Through their multi-case study, Mockus 
et al. observed that higher test coverage leads to detection of 
more flaws and fixing them leads to better software quality. 
Similar test code and defect density relationship was found in 
research by Athanasiou et al. [8]. Their study introduced a 
model which assessed test code quality by combining three 
main benefits of automated testing: code completeness, 
effectiveness, and maintainability. Their results revealed that 
good test code quality positively influences throughput and 
defect handling performance. Gren et al. [9] tried to find a 
correlation between unit testing and number of defects in the 
codebase. Their research further aims to help developers in 
understanding how to best allocate their resources to testing. 
Swart [10] and his research group measured the effect of 
reengineering and unit testing code on the number of fixed 
bugs. They compared the predicted and actual number of bugs 
for a component, after reengineering and unit testing it. They 
predicted the bug-proneness of components, and successfully 
ranked them by feasibility. Their results indicated that the 
number of bug fixes decreases after a bug-prone component 
has been reengineered and covered with unit tests. Another 
experiment was conducted by Tengeri et al. [11] on four open 
source systems’ test suites, to compare them with respect to 
code coverage and mutation score. Tengeri et al. demonstrated 
situations where code coverage and mutation score are 
sufficient indicators of expected defect density. The relation to 

our work is that ATDF relies in part on standard software 
metrics and our evaluation is in terms of defect. Hence, we 
expect to see the relationship between the two. 

There has been research in identifying and categorizing 
defects through code changes and commit history logs. 
GitcProc a tool developed by Casalnuovo et al. [13] is based 
on regular expressions and source code blocks, which 
analyzes GitHub [17] project history, including fine-grained 
source code information and development time bug fixes. This 
tool searches for bug-fix related words such as error, bug, 
defect, and fix within the commit message to classify it as a 
bug-fix commit. We implemented a similar keyword-based 
approach for analyzing commit logs when computing the two 
ATDF metrics: Self-Descriptiveness and Anomaly Control. 

Hoffman’s research [12] measured computing cost and 
benefits from test automation. His research described some 
financial, organizational, and test effectiveness impacts 
observed when test automation is introduced in the system.  

We examined research studies to extract different open 
source projects used in their case studies to assess defect 
density and other software metrics. All but one of the 24 
projects that we considered were selected from references.  

VIII. CONCLUSION 
The purpose of this paper is to evaluate ATDF for ranking 

legacy components versus expected ROI from test automation. 
We used a set of open source projects and defined ROI as lint 
style defect count vs cost of test automation.  

We calculated Pearson correlation between ATDF 
rankings and our independent ROI measure. We found 
moderate to strong correlation between the ATDF and the 
quality approach ROI measure, for those components with 
increase in test code greater than ten percent. Hence, the 
quality approach supports the ROI calculations produced by 
ATDF for the studied projects. 
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Appendix  
 A. Projects Considered. 
 Project Source URL 

1. Accumulo [5] https://accumulo.apache.org/

2. Closure-
compiler 

[26] https://developers.google.com/clos
ure/compiler/ 

3. Cobertura [6][7] http://cobertura.github.io/cobertura/

4. Commons 
Lang 

[7] https://commons.apache.org/proper
/commons-lang/ 

5. Commons 
Math 

[26] http://commons.apache.org/proper/
commons-math/ 

6. Eclipse 
JDT Core 
 

[2]  https://www.eclipse.org/jdt/core/
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