
Efficiently Finding Data Flow Subsumptions
Marcos Lordello Chaim
University of Sao Paulo

Sao Paulo, SP, Brazil
Email:chaim@usp.br

Kesina Baral, Jeff Offutt
George Mason University

Fairfax, VA, USA
Email:{kbaral4,offutt}@gmu.edu

Mario Concilio and Roberto P. A. Araujo
University of Sao Paulo

Sao Paulo, SP, Brazil
Email:{mario.neto,roberto.araujo}@usp.br

Abstract—Data flow testing creates test requirements as
definition-use (DU) associations, where a definition is a program
location that assigns a value to a variable and a use is a location
where that value is accessed. Data flow testing is expensive,
largely because of the number of test requirements. Luckily,
many DU-associations are redundant in the sense that if one
test requirement (e.g., node, edge, DU-association) is covered,
other DU-associations are guaranteed to also be covered. This
relationship is called subsumption. Thus, testers can save re-
sources by only covering DU-associations that are not subsumed
by other testing requirements. Although this has the potential
to significantly decrease the cost of data flow testing, finding
subsumption among DU-associations is quite difficult. Previous
solutions are costly and contain subtle flaws that sometimes lead
to incorrect results. We model the data flow testing subsumption
as a data flow analysis framework, allowing us to use efficient
algorithms that quickly discover data flow subsumption rela-
tionships. Experimental data suggest that the framework and
algorithm can reduce the cost of data flow testing and will work
at scale.

Index Terms—Software testing, Structural testing, Data flow
testing, Subsumption relationship, Data flow analysis frame-
works, Algorithms

I. INTRODUCTION

Software engineers test software to find faults and assess
the quality of software under test. The number of possible
inputs is effectively infinite for most programs, thus we
cannot completely test the program. Thus, testers try to use
a reasonable and cost-effective number of tests while also
maximizing the test suite’s fault detection capability. One
method is to use test requirements to cover specific parts
of software artifacts. Test requirements can be derived from
various software artifacts, including source code [1], [2],
graphs [3], [4], and the software’s input space [5]. Coverage
criteria provide a systematic way to generate test requirements
[6] and can be used to assess the test adequacy and test quality.

Graph criteria are widely used for testing. Graphs can
be generated from source code, state machines, software
specifications, and use cases. Several related test criteria have
been proposed based on the control flow analysis and data flow
analysis on graphs. Control flow analysis focuses on testing the
flow of program control during execution. Data flow analysis
evaluates the flow of data values during program execution.
The goal of data flow testing is to exercise pairs of definitions
and uses of variables, known as definition-use associations. It
is also referred to as du associations, def-use associations,

du-pairs or def-pairs. In this paper, we use the term DU-
associations, or simply DUA.

Studies have shown that data flow testing (DFT) is compara-
ble to that with control flow testing (CFT) [7] [8] [9]. Hemmati
showed that du associations coverage is able to find faults that
control flow coverage criteria do not [9]. Hemmati found that
79% of faults control flow criteria did not find were found
by DFT. This shows that DFT could add value when used
alongside CFT. Additionally, DFT coverage supports security
verification [10] and fault localization [11], [12].

Control flow analysis is widely available in commercial
test coverage calculation tools like Clover (www.atlassian.
com/software/clover/), JaCoCo (www.eclemma.org/jacoco/),
Cobertura (cobertura.github.io/cobertura/), and even some in-
tegrated development environments (IDE) like IntelliJ (www.
jetbrains.com/idea/), and is commonly used by professional
programmers. However, data flow analysis is not widely used.
This low usage of DFT is in part due to the large number of
test requirements for DFT, each of which adds to the expense.
Table I illustrates this issue by listing programs with their sizes
in terms of lines of code (LOC) and number of DUAs, along
with other metrics and data. Math, the fifth from the bottom of
the table, has 54,518 LOC. The all-uses criterion [13], which
requires every use to be reached at least once, has 87,603 DUA
requirements. This is 60% more than the LOC.

One approach to reduce DFT’s cost is to exploit the sub-
sumption relationship among testing requirements (TR) [14]–
[16]. A TR tr1 (e.g., a DUA D1) subsumes another test
requirement tr2 (e.g., a DUA D2) if every test path that
satisfies tr1 also satisfies tr2 [14]. A minimal subset of TRs
that subsumes every other TR is called a spanning set and
its elements are referred to as unconstrained test requirements
[14]. Identifying the spanning set establishes a priority order
among TRs that allow testers to focus on just the unconstrained
requirements, saving time and effort. Santelices and Harrold
[15] make use of the subsumption of TRs of different coverage
criteria to reduce the cost of code instrumentation. They infer
which DUAs have been covered or conditionally covered based
on the edges that a test case visits. The subsumption of DUAs
with respect to nodes (DUA-node subsumption) and edges
(DUA-edge subsumption) can save resources by focusing on
DUAs not covered by node and edge coverage or by tracking
only nodes or edges at run-time.

Discovering data flow testing subsumption relationships
(DFTS), though, has been an elusive goal. The current al-

1

TABLE I
PROGRAM METRICS AND DATA FLOW SUBSUMPTION DATA

Program LOC Methods Methods DUAs %-DUA %-DUA %-Unc. t-DUA t-DUA t-Unc.
w. DUAs exec. -Node -Edge DUAs -Node (ms) -Edge (ms) DUAs (ms)

Csv 602 40 37 929 57.3 70.3 31.5 343.8 334.7 670.0
Cli 1107 60 54 1291 69.6 83.0 29.4 454.6 443.2 923.2
Codec 1946 109 92 4446 38.0 48.4 37.9 678.9 656.4 6778.4
Jsoup 2046 136 119 1866 80.0 92.9 26.8 584.9 595.3 877.3
J-Xml 3084 179 124 3402 75.7 87.9 26.5 715.3 730.5 1237.9
Compress 4974 217 116 6286 58.7 67.0 28.3 1126.1 1169.5 5797.4
Gson 3840 226 191 3281 76.6 88.4 29.7 849.6 817.5 1295.8
Mockito 7468 400 * 4236 74.6 90.0 32.1 1327.1 1339.2 1931.1
J-Core 10,978 563 383 17,653 59.5 72.7 28.1 1500.2 1538.2 6394.3
JxPath 14,699 800 691 20,178 66.9 84.4 29.7 1763.4 1783.0 6494.9
Lang 15,270 1157 * 22,290 62.8 73.9 32.0 2178.5 2085.0 6087.2
Time 19,672 1182 1010 18,160 69.2 80.9 31.1 2264.7 2338.9 5915.2
Collections 18,156 1311 1094 16,937 68.8 81.9 30.0 2331.4 2322.0 4556.9
J-DataBind 27,274 1737 1266 31,797 73.8 85.6 26.4 2834.3 2881.4 6982.3
Math 54,518 2415 1999 87,603 57.9 64.2 25.3 12,141.9 11,815.7 104,246.0
Chart 68,346 3219 2151 81,847 72.8 82.2 24.5 6390.8 6301.0 18,420.9
Closure 61,177 3696 3241 78,068 67.9 83.7 31.8 6551.1 6358.1 32,076.6
Weka 216,781 11,315 1964 337,063 59.9 70.9 27.4 22,361.8 22,317.7 98,377.5

Total/Avg. 531,938 28,758 14,532 737,333 66.1 78.2 29.4 – – –

gorithms are costly, being linear [15] in the number of DUAs
for DUA-edge and quadratic [14], [16] for DUA-DUA sub-
sumption. This cost hampers its application for industry-size
systems. Furthermore, some algorithms [14], [16] might miss
paths that would block the subsumption of DUAs, leading
to incorrect results. We address both cost and omissions
regarding data flow subsumption discovery.

We present a novel and efficient approach to tackle data
flow subsumptions. It models the problem of finding the local
DUA-node subsumption; that is, those DUAs that are covered
whenever a particular point p (e.g, a node) of a program is
reached, as a data flow analysis framework [17], [18]. Using
the local DUA-node subsumption, one can efficiently discover
the subsumption of DUAs with respect to nodes, edges, and
other DUAs. We show experimental data suggesting that data
flow subsumptions are effective and can be found at scale.

Efficient data flow subsumption discovery, applicable to
industry-sized programs, can reduce the number of test re-
quirements to be verified or tracked and better estimate test set
completeness. This paper starts with background in data flow
testing in section II. We then describe data flow subsumptions
in section III, followed by our solution to solve the local DUA-
node subsumption in section IV. Algorithms to find other data
flow subsumptions are described in section V, followed by
experimental analysis in section VI. Related work is discussed
in section VII, and conclusions are in section VIII.

II. BACKGROUND

Graph based testing criteria use graph abstractions of the
software under test to generate tests. A graph can be defined
as G(N,E, s, e), where N is a set of nodes, E is a set of
edges, s is the start node and e is the exit node. A node (n)

can represent a single statement of the program or a sequence
of statements. For our purposes, we consider a sequence of
statements, also known as a basic block, to be a node. An edge
represents potential control flow from one node to another,
written as (ni, nj), ni 6= nj , where node ni is the predecessor
and node nj is the successor. Graphs extracted from a program
must have at least one start node and exit node for it to be
useful to generate tests. A program can have multiple entry
and exit points.

A path is a sequence of nodes (ni, . . ., nk, nk+1, . . ., nj),
where i ≤ k < j, such that (nk, nk+1) ∈ E. A test path is a
special path that starts from a start node s and ends at an exit
node e. A test path represents the execution of one or more
test cases. A side-trip is a sub-path that starts and ends at the
same node (a loop).

Figure 1 presents a program that finds the maximum element
in an array of integers [19] and Figure 2 presents its control
flow graph. The numbers at the start of each line of code in
Figure 1 indicate the line’s corresponding node in the graph.

Graph coverage criteria come in two forms, control flow
coverage criteria and data flow coverage criteria. Control flow
coverage criteria cover the structure of the graph, including
nodes, edges, and specific sub-paths. Data flow coverage crite-
ria evaluates the flow of data values during program execution.
Data flow coverage criteria provide test requirements for data
flow testing by focusing on definitions and uses of variables.
A definition, or def, is a program location where a value is
assigned to a variable. A use is a location where the variable
is referenced. The graph shown in Figure 2 is annotated with
defs and uses associated with its nodes and edges.

Data flow testing focuses on the flow of data values from
definitions to uses. A variable can be used to compute a value

2

/ * 0 * / i n t max (i n t a r r a y [] , i n t l e n g t h)
/ * 0 * / {
/ * 0 * / i n t i = 0 ;
/ * 0 * / i n t max = a r r a y [++ i] ;
/ * 1 * / whi le (i < l e n g t h)
/ * 1 * / {
/ * 3 * / i n t rogue = 1 ;
/ * 3 * / i f (a r r a y [i] > max)
/ * 5 * / {
/ * 5 * / max = a r r a y [i] ;
/ * 5 * / p r i n t (rogue) ;
/ * 5 * / }
/ * 4 * / i = i + 1 ;
/ * 4 * / }
/ * 2 * / re turn max ;
/ * 6 * / }

Fig. 1. Example program Max

Fig. 2. Annotated flow graph for max.eps

or in a predicate. Value computations are associated with nodes
and predicate computations are associated with edges.

A definition-clear (def-clear) path with respect to a variable
x is a path where x is not redefined along the path. A du-path
is a simple sub-path (all nodes are different except the first
and last nodes) that is def-clear with respect to (wrt) variable
x. A du-path with side-trips wrt variable x allows side-trips
that are also def-clear wrt x.

Data flow test criteria define test requirements as specific
du-paths that must be covered. A du association set D(d, u, x)
is a set of du-paths and du-paths with side-trips wrt variable x
that start at node d and end at node u. If the use is on an edge
(u′, u), the DU-associations set is written as D(d, (u′, u), x).
Several data flow testing criteria have been invented [13], [20]–
[22]. In this paper, we focus on the all-uses criterion proposed
by Rapps and Weyuker [13].

The all-uses criterion requires that at least one du-path (or
du-path with side-trips) is executed, or toured, for every DU-
associations (DUAs) set, that is, each def reaches each use at
least once. If a test set T includes a du-path (or du-path with
side-trips) for each DUA D(d, u, x) or D(d, (u′, u), x), it is

TABLE II
ALL-USES TEST REQUIREMENTS FOR PROGRAM MAX

All-uses
(0, (3,5), array) (0, (3,4), array) (0, 5, array)
(0, (1,3), length) (0, (1,2), length) (0, (1,3), i)

(0, (1,2), i) (0, (3,5), i) (0, (3,4), i)
(0, 4, i) (0, 5, i) (0, 2, max)

(0, (3,5), max) (0, (3,4), max) (5, 2, max)
(5, (3,5), max) (5, (3,4), max) (4, (1,3), i)

(4, (1,2), i) (4, (3,5), i) (4, (3,4), i)
(4, 4, i) (4, 5, i) (3, 5, rogue)

said to be adequate for the all-uses criterion for program P
since all required DUAs were covered.

Table II shows the test requirements for the all-uses cov-
erage criterion on the program from Figure 1. The triplet
(0, (3, 5), array) indicates there is a def of variable array
at node 0, which reaches a use at edge (3, 5). Table II shows
that the all-uses criterion generates many test requirements,
24, even for a relatively small method with only 6 nodes.
This makes data flow testing expensive. This paper uses
subsumption to reduce the cost of data flow testing [14].

III. DATA FLOW TESTING SUBSUMPTION (DFTS)

Subsumption is traditionally used to compare testing crite-
ria. A test criterion C1 subsumes criterion C2 if and only if
every set of execution paths P that satisfies C1 also satisfies C2

[13], [23]. Satisfying the subsuming test criterion guarantees
that the subsumed criterion is also satisfied. However, the
subsumption relation may not hold if some test requirements
of the subsuming criterion are infeasible. Additional strategies
might be needed to reestablish subsumption [24].

Marré and Bertolino [14] explored subsumption relation-
ships among testing requirements (TR) of the same criterion
C. The intuition is that if TR tr1 is subsumed by tr2, then
tr1 is easier to cover than tr2, resulting in an ordering
that exists among TRs [25]. A minimal subset of TRs that
subsumes every other TR is called a spanning set and its
elements are referred to as unconstrained test requirements
[14]. Thus, testers can save resources by only covering TRs
that are guaranteed to cover other TRs. Santelices and Harrold
[15] compare TRs from different criteria, in particular du
associations (DUAs) subsumed by edges. In doing so, testers
can focus only on DUAs not subsumed by edges to enhance
a test suite.

In a separate thread of research, the same concept of sub-
sumption has been used to identify and approximate minimal
sets of mutants [26]–[30]. Killing a minimal set of mutant
guarantees that all non-equivalent mutants would be killed by
the same tests, but with substantially less effort than killing
all mutants. The first two papers [26], [27] introduced the
theoretical concept, presented the mutant subsumption graph
(MSG), and showed how to approximate the “true” MSG

3

Fig. 3. Local DUA-node subsumption for program Max

dynamically. Subsequent papers showed how to approximate
the MSG statically [28], showed that redundant (constrained)
mutants effect the mutation score [30], and used minimal mu-
tation to identify a significant weakness in selective mutation
[29]. The minimal mutant set is directly analogous to the
spanning set in structural criteria, with a significant difference
being that the minimal mutant set is uncomputable.

The following subsections discuss three data flow testing
subsumption relationships: (a) DUA subsumption by nodes,
(b) DUA subsumption by edges, and (c) DUA subsumption
by other DUAs.

A. DUA-node subsumption

DUA-node subsumption identifies DUAs that are guaranteed
to be covered if a specific node in the graph is visited.
More formally, DUA D(d, u,X) or D(d, (u′, u), X) is DUA-
subsumed by node n if D is covered on all test paths that visits
node n and reaches the exit node. The set of DUAs subsumed
by node n is the set of all DUAs that are covered by all test
paths that visit n.

We find it necessary to allow for interrupted execution,
for example exceptions or other program aborts. Thus, we
distinguish between local DUA-node subsumption, which is
the set of DUAs covered by all paths that reach n, and global
DUA-node subsumption, which is the set of DUAs covered by
all test paths that both reach n and then continue to the exit
node. The set of globally subsumed DUAs include DUAs that
are DUA-node subsumed by nodes that appear on all paths
from node n to the exit node.

Figure 3 shows the DUA-subsumption sets for the Max
method from Figures 1 and 2. Each node contains the locally
subsumed DUAs. For example, if node 5 is reached, the
definition of array at node 0 is guaranteed to have reached
the use on edge (3,5).

Node ni dominates node nj if every path from the start node
to nj includes ni [17]. Node nj post-dominates node ni if any
path from nj to the exit node includes ni. A node dominates
itself but does not post-dominate itself [16]. In the absence of

Fig. 4. DUA-edge subsumption for program Max

early program termination, node 5 is post-dominated by nodes
4, 1, 2, and 6. When they are visited by a test path, the set of
DUAs that are globally subsumed by node 5 includes the six
DUAs listed in node 5, plus DUAs (0, 4, i) from node 4 and
(0, (1,2), length) from node 2. Thus, node 5 locally subsumes
six DUAs and globally subsumes eight DUAs.

Node 5 is the only unconstrained node for program Max.
This means that eight of 24 DUAs will be covered if all nodes
of the Max program are visited. Thus, node coverage would
result in a data flow coverage of 33%.

B. DUA-edge subsumption

DUA-edge subsumption addresses DUAs that are guaran-
teed to be covered if edges are visited. A DUA D(d, u,X)
or D(d, (u′, u), X) is DUA-subsumed by edge (n′, n) if D is
covered on all test paths that visit (n′, n). The set of DUAs
subsumed by edge (n′, n) is the set of all DUAs that are
covered by all test paths that visit (n′, n).

Figure 4 presents the control flow graph of Max, annotated
with the DUAs that are locally subsumed by each edge. The
global DUA-edge subsumption sets include DUAs subsumed
by nodes that post-dominate n. For example, the seven DUAs
listed on edge (5,4) are locally subsumed; the global set also
includes (0, (1,2), length) from edge (1,2).

Edges (3,5) and (3,4) are unconstrained for the all edges
criterion, thus visiting them will ensure all other edges are
visited. Edge coverage will also ensure that nine unique DUAs
are toured (37.5%). That is one more than node coverage
ensures, specifically, the DUA (0, (3,4), array), which is
subsumed by edge (3,4).

C. DUA-DUA subsumption

DUA-node and DUA-edge subsumption relate different
criteria–node coverage and edge coverage, with all-uses cover-
age. DUA-DUA subsumption relates test requirements within
the same criterion, all-uses coverage. A DU-association D1

subsumes another DUA, D2, if every test that covers D1 is
guaranteed to also cover D2.

4

(0,5, i)
(0,(3,5), i)

(5,(3,5), max) (5,(3,4), max)

(4,5, i)
(4,(3,5), i)

(5,2, max)
(3,5, rogue)

(0,(3,5), max)
(0,5, out)

(0,5, array)
(0,(3,5), array)

(0,(3,4), max)
(0,(3,4), i)

(4,(3,4), i)

(0,(3,4), array)
(4,4, i)

(4,(1,3), i)

(4,(1,2), i)
(0,4, i)

(0,(1,3), i)
(0,(1,3), length)

(0,(1,2), i)

(0,2, max)

(0,(1,2), length)

Fig. 5. DUA-DUA subsumption for example program Max

Formally, D1(d1, u1, X1) subsumes D2(d2, u2, X2) (D2 →
D1), if every test path that contains a def-clear path with
respect to X1 between d1 and u1 also contains a def-clear path
with respect to X2 between d2 and u2. We use the notation
D2 → D1 to indicate that D1 subsumes D2.

As with DUA-node and DUA-edge subsumption, D1 locally
subsumes D2 if D2’s def-clear path with respect to X2 ends
before D1’s def-clear path with respect to X1 ends.

In the example program, if a test ensures the def of i at node
4 reaches the use of i at edge (3,4), we are guaranteed that
the def of array at node 0 also reaches the use of array at
(3,4). Thus, (0, (3,4), array)→ (4, (3,4), i). The subsumption
relationship is not symmetric, however, because a test that
covers (0, (3,4), array) might not cause the def of i at node
4 to reach the edge (3,4), so (0, (3,4), i) does not subsume
(4, (3,4), i).

The graph in Figure 5 shows subsumption among the DUAs
of Max. If two DUAs D1 and D2 are in the same node, then
D1 → D2 and D2 → D1. If D2 is in a node with an edge to
a node that has D1, that means that D2 → D1. This graph is
very similar to the mutant subsumption graph [27].

This DUA subsumption graph (DSG) allows us to directly
find a minimal set of DUAs that, if covered, implies that
all DUAs are covered. This minimal set of DUAs is called
the spanning set. The leaves of the DSG, shown with shaded
rectangles in Figure 5, give the spanning set of DUAs for
program Max. A DUA in the spanning set is an unconstrained
DUA. The spanning set is not unique because some leaves
have more than one DUA. When that happens, any of the
DUAs in the node could be included in the spanning set.

Two of the five leaf nodes in Figure 5 have two DUAs. Thus
Max has four possible sets of unconstrained DUAs, one being
{(0, 5, i), (5, (3,5), max), (5, (3,4), max), (0, (3,4), max),
(0, (1,2), i)}.

IV. FINDING THE LOCAL DUA-NODE SUBSUMPTION

Data flow analysis frameworks are created to solve data flow
analysis problems such as reaching definitions, live-variables,
and available expressions [18]. They determine facts that are
valid at the entry or exit of a program point p whenever p is
reached [31]. We use the data flow analysis framework Data
Flow Subsumption Framework (DSF) [32] to find local DUA-
subsumption.

DSF finds the set of DUAs already covered or available
to be covered at the entrance (set IN(n)) and at the exit (set
OUT(n)) of a node n along all paths that reach n (the facts). A
DUA is available to be covered if its def node was previously
toured in the path and there is no re-definition of its variable
in the nodes that were subsequently toured.

This section presents Subsumption Algorithm (SA) that uses
the DSF framework to find the local DUA-node subsumption,
and then analyzes SA’s complexity.

A. Subsumption algorithm
The Subsumption Algorithm (SA), presented in Algo-

rithm 1, uses DSF to find the local DUA-node subsumptions.
SA adapts a classical data flow analysis algorithm to find the
values of sets IN(n) and OUT(n). The final output of the
algorithm is Covered(n), a set of DUAs that are covered at
node n when n is reached from any path that begins at the
start node s of a flow graph G. Covered(n) gives the local
DUA-node subsumptions.

Lines 1-6 in Algorithm 1 initialize the algorithm’s working
sets. Initially, IN(s) is empty since there is no DUA covered
or available to be covered, OUT(s) contains the DUAs that
become available for coverage after s is traversed (see the
definition of Born(n) below), and Covered(s) is also empty
because no DUA is covered at s. All other nodes are initialized
with OUT and Covered equal to all DUAs.

Lines 9-12 represent the DFS transfer functions. When a
node n is reached, transfer functions calculate the fact that is
valid at the entrance and exit of node n. To define the transfer
functions of DSF, we associate nodes of the flow graph with
sets, as introduced by Chaim and Araujo [19]. These sets are
defined as follows:

Let n ∈ N be a node in flow graph G(N,E, s, e) of a
program P and (d,u,X) or (d,(u′,u),X) a DUA required to
test P according to the all-uses criterion.
Born(n) : set of DUAs (d,u,X) or (d,(u′,u),X) s.t. d = n.
Disabled(n) : set of DUAs (d,u,X) or (d,(u′,u),X) s.t. X is

defined in n and d 6= n.
PotCovered(n) : set of DUAs (d,u, X) or (d,(u′,u), X) s.t.

u = n.
Sleepy(n) : set of DUAs (d,(u′,u), X) s.t. u′ 6= n.

Born(n) sets are similar to the gen(n) and e gen(n) sets
of the reaching definitions and available expressions problems
[33]. They represent DUAs that are born because the node
where their variable is assigned has been toured. Disabled(n)
is analogous to the sets kill(n) and e kill(n) of the same data
flow analysis problems, since they contain the DUAs that are
killed after n was traversed.

5

Input: Flow graph G(N,E, s, e) of program P ; sets
Disabled(n), Sleepy(n), PotCovered(n), and
Born(n), all DUAs required to test P

Output: Covered(n), set for every node n

1 IN(s) = ∅ where s is the start node;
2 OUT(s) = Born(s) where s is the start node;
3 Covered(s) = ∅ where s is the start node;
4 for each node n other than the start node s do
5 OUT(n) = all DUAs of program P ;
6 Covered(n) = all DUAs of program P ;

7 while changes to any OUT occur do
8 for each node n ∈ N do
9 IN(n) =

⋂
p∈PRED(n) OUT(p);

10 CurSleepy =
⋃

p∈PRED(n)and(p,n)is not a back edge
Sleepy(p);

11 Covered(n) =
⋂

p∈PRED(n) Covered(p)
⋃

[(IN(n) - CurSleepy)
⋂

PotCovered(n)];
12 OUT(n) = Born(n)

⋃
[IN(n) - Disabled(n)]⋃

Covered(n);

13 for each node n ∈ N do
14 IN(n) =

⋂
p∈PRED(n) OUT(p);

15 CurSleepy =
⋃

p∈PRED(n)and(p,n)is not a back edge
Sleepy(p);

16 Covered(n) =
⋂

p∈PRED(n) Covered(p)
⋃

[(IN(n)
- CurSleepy)

⋂
PotCovered(n)];

17 return Covered(n) for every node n

Algorithm 1: Subsumption algorithm

SA also needs sets PotCovered(n) and Sleepy(n). PotCov-
ered(n) represents those DUAs that can potentially be covered
when a node is traversed. If a DUA is available for coverage
when n is reached and it belongs to PotCovered(n), then it
will be covered after n is traversed.

A node may be reached from multiple paths. We cannot
guarantee that a particular edge DUA has been covered since
we cannot predict which path reached node n. Thus, we use a
sleepy DUA set to identify which edge DUAs are guaranteed to
be covered. After touring node n, we can say that edge DUAs
with uses on edges starting at node n will be covered. The
other edge DUAs are called sleepy at n. Hence, the Sleepy(n)
set blocks the edge DUAs (d,(u′,u),X) from being covered
after node n is traversed, if u′ 6= n. For example, after touring
node 3, we know that edge DUAs with use on edge (3,5) or
(3,4) will be covered. So the other edge DUAs of the program
are in the set Sleepy(3). This concept of sleepy is used to
calculate the set CurSleepy.

CurSleepy is the union of the DUAs that are blocked after
a predecessor p of n is toured, if (p,n) is not a back edge.
Edge (p,n) is a back edge if node n dominates node p [33].
In Figure 2, (4,1) is a back edge. CurSleepy is used to block
edge DUAs from being covered when we cannot predict the
path that reached a node n. However, when (p,n) is a back

edge, we know that n is always toured before p is toured so
that it cannot block other edge DUAs from being covered at
n. For example, two paths could reach node 4: (0,1,3,5,4) and
(0,1,3,4). To identify the edge DUAs that will definitely be
covered at node 4, we generate the sleepy set of node 4’s
predecessors, Sleepy(5) and Sleepy(3). There is no DUA with
a use in edge (5,4) to be excluded from the Sleepy set, hence
all DUAs are in Sleepy(5). Thus, CurSleepy at node 4 is the
union of Sleepy(3) and Sleepy(5), that is, all edge DUAs. The
CurSleepy set blocks all edge DUAs as not guaranteed to be
covered at node 4.

The value of IN(n) is found by intersecting OUT sets of
the predecessors of n on line 9. The transfer function on line
10 calculates edge DUAs that cannot be covered at node n.

The transfer function on line 11 finds the DUAs that are
covered by all paths that reach node n. It has two parts that
are combined via union. The first part of line 11 intersects
Covered sets of the predecessors of n. Thus, node n will
inherit only DUAs that were previously covered in all paths
that reach it. The second part of line 11 calculates the DUAs
covered at node n. IN(n) has the DUAs that were covered
and available to be covered in all paths that reach n according
to line 9, CurSleepy has the edge DUAs that are blocked
at node n, and PotCovered(n) contains DUAs that might be
covered at n if they are in IN(n). The remaining DUAs after
these operations, plus the DUAs covered in previously toured
nodes, give the DUAs covered at node n.

Finally, the transfer function in line 12 determines the
OUT(n) sets–that is, the DUAs that are forwarded in the
data flow analysis. They are calculated in three parts that
are unioned together. The first part is the Born(n) set, which
contains the DUAs that become available for coverage at node
n; that is, their variable was assigned at n. The second part
contains the DUAs that are available in IN(n) and survive
node n because they do not belong to Disabled(n). The
last set added in Line 12 is the set of DUAs covered at n
(Covered(n)). All these DUAs are forwarded to the node’s
successors in the data flow analysis.

Lines 13-16 update the Covered(n) sets. OUT(n) has
already converged to its final values after leaving the while-
loop at Line 7, but Covered(n) needs to be updated with the
final values of OUT(p).

B. Complexity

The complexity of SA is dominated by the number of
iterations needed to finish the while-loop in line 7. In the worst
case, the cost of SA is the product of the number of DUAs
and the number of nodes in the flow graph. However, SA
shares characteristics with other practical data flow analysis
problems, including reaching definitions and available expres-
sions. The fact at each node (the covered or available DUAs)
propagates along cycle-free paths.

If the nodes are visited in a depth-first order (reverse
postorder [17]) in line 8, the information is first propagated
through the cycle-free paths. Using this approach, the number
of iterations will be no greater than the depth of the nested

6

loop in the program [33] plus 2. These loops tend to be limited
to a small constant [34], [35]. SA requires yet another visit to
each node to update the Covered sets, which will require one
more visit to every node of the flow graph.

SA also finds the dominance relationship to determine
the back edges. Luckily, the dominance relationship is also
modeled as a data flow analysis problem with the same
property of propagating its fact (the dominator nodes) along
cycle-free paths. Thus, the dominance relationship is found at
the same cost. Therefore, the cost of SA for most programs
tends to be linear in the number of nodes in its flow graph.

V. FINDING DATA FLOW SUBSUMPTIONS

This section shows how to use the Subsumption Algorithm
(SA) algorithm to find DUA-node, DUA-edge, and DUA-DUA
subsumption. We also explore the cost.

A. DUA-node subsumption

Section III presents the DUA-node subsumption algorithm
informally. First, we find the local DUA-node subsumption
using SA and the post-dominance relationship. Then, we union
of Covered(n) and Covered(m) sets when m post-dominates
n to find the set of DUAs subsumed by a node n.

SA and the post-dominance relationship cost ≈ O(|N|),
where |N| is the number of nodes in the flow graph. The union
of the Covered sets costs up to O(|N|2) since for each node
n, every other node m would be checked to see if it post-
dominates n. However, the post-dominators of n are generally
fewer than the number of nodes and can be scanned efficiently
when implemented as bit vectors using machine instructions.

B. DUA-Edge subsumption

We first use SA to calculate local DUA-node subsumption.
Then, Algorithm 2 uses SA results to find the local DUA-edge
subsumption.

1 for each edge (n′, n) do
2 if #Successors(n′) > 1 then
3 Covered(n′, n) = [(OUT(n′) - Sleepy(n′))

⋂
PotCovered(n)]

⋃
Covered(n);

4 else
5 Covered(n′, n) = Covered(n′)

⋃
Covered(n);

6 return Sets Covered(n′, n)

Algorithm 2: Local DUA-edge subsumption algorithm

Two results of SA are IN(n) and OUT(n). OUT(n′)
contains DUAs that are covered or available for coverage
after node n′ is toured by any path from the start node to
n′. Algorithm 2 assumes every edge (n′, n) is toured, so it
calculates DUAs covered as if the next node following n′ is
n; that is, set Covered(n′, n), in Lines 3-5.

If more than one path leaves n′ (n′ has more than one
successor at line 2), then line 3 allows only edge duas with
uses in (n′, n) to be covered at (n′, n) and joins them with
Covered(n). Note that Sleepy(n′) removes from OUT(n′)

edge DUAs whose use is in edges (u′, u) such that u′ 6= n′.
In other words, only edge DUAS with uses in (n′, n) will be
allowed to be covered and joined with Covered(n). Line 5
deals with edges (n′, n) with a single successor. The set of
DUAs covered at (n′, n) is the union of DUAs covered at n′

and n. The global DUA-edge subsumption is calculated by
adding to each Covered(n′, n) those sets Covered(m) such
that m post-dominates n.

DUA-edge differs from DUA-node subsumption because it
calculates the local DUA-edge subsumption (Algorithm 2).
Lines 3-5 can be implemented as bitwise operations; so, their
cost is constant. The for-loop at line 1 iterates on edges;
however, the number of edges is O(|N|) for most programs.
As a result, local DUA-edge subsumption costs ≈ O(|N|).

C. DUA-DUA subsumption

For every DUA D1, DUA-DUA subsumption associates a
set of DUAs D2 that are covered in every test path that covers
D1. We apply SA to find DUA-DUA subsumption, but in a
different graph.

Marré and Bertolino [14], [25] suggested a graph called G∗
that models all paths that cover a dua D1(d1, u1, X1). That
is, every test path in G∗ should cover D1. G∗ includes paths
from the start node (s) to the definition node (d1), def-clear
paths wrt X1 from d1 to node u1, and paths from u1 to the exit
node (e). We use a different graph, graphdua, which includes
paths that are not in G∗ that might block the subsumption of
a DUA D2. We compare and contrast G∗ and the graphdua
in the related work.

Given a DUA D1(d1, u1, X1), we calculate the flow
graph graphdua(D1), and then run SA on the graph. SA
gives Covered sets for all nodes of graphdua(D1); however,
Covered(eD1

), where eD1
is the exit node of graphdua(D1),

contains the set of DUAs D2 that are subsumed in any path
that covers D1.

As far as cost goes, G∗ and graphdua(D1) cost O(|E|) to
calculate, where |E| is the number of edges [25]; hence, its cost
is O(|N|). SA’s cost is determined by the number of nodes in
the graph. A graphdua has no more than five times the number
of nodes of the program’s flow graph, which is O(|N|). As a
result, running SA on a graphdua costs ≈ O(|N|). Hence,
calculating the DUAs subsumed by D1 is ≈ O(|N|).

If U is the set of all DUAs required to test a program,
DUA-DUA subsumption will cost ≈ O(|U||N|) to calculate.
Unconstrained DUAs, as shown in Figure 5, cost up to O(|U|2)
to calculate [36]. Implementing the sets of subsumed DUAs
as bit vectors and scanning them with machine instructions
reduce this cost.

VI. EXPERIMENTAL ANALYSIS

We empirically investigated three research questions regard-
ing SA and data flow subsumptions:
RQ1: Does SA correctly find local DUA-node subsumption?
RQ2: How effective is the data flow subsumption?
RQ3: How long does it take to calculate the data flow

subsumption?

7

The rest of this section presents the subject programs
and, for each RQ, the results and its discussion. We con-
clude the section with threats to validity. We have deployed
our replication experimental package here: https://github.com/
icst2021satool.

A. Subject programs

For our study, we chose 17 programs from the Defects4J
repository [37], plus the machine learning program Weka, as
described in Table I. The programs are sorted by the number
of methods with DUAs. We selected the first buggy version
(referred to as 1b) from Defects4J and Weka’s version 3.8.
The programs’ purposes vary: manipulating text in compressed
and binary files (Compress, Csv, Gson, JacksonCore, Jack-
sonDataBind, JacksonXml, and JSoup); parsing and compiling
(Cli, Closure, and JxPath); data structure manipulation and lan-
guage utilities (Collections and Lang); mathematics, statistics,
and data mining (Math and Weka); date and time manipulation
(Time); and software testing (Mockito). The programs’ size
also vary: they range from small programs such as Csv (602
LOC) to larger programs such as Weka (216,781 LOC).

Table I (in section I) shows the LOC, the number of
methods with DUAs, the number of methods executed, and
the total of DUAs required to test the programs. javancss
(www.kclee.de/clemens/java/javancss/) calculated the LOC;
SAtool (github.com/icst2021satool/source-code) found the
methods with DUAs and the DUAs themselves. We modified
Jaguar [38] to collect DUA coverage for every Junit method
of the developers’ tests included in the programs’ repository.
We were not able to collect coverage for Lang and Mockito
(indicated by the ‘*’ character in Table I) and we collected
data from 443 out of 509 executed classes for Weka. SAtool
was run on a MacAir, 1.8 GHz Dual-Core Intel Core i5, 8 GB
1600 MHz DDR3.

B. RQ1: SA correctness

We verified the correctness of SA in two ways. We proved
that the data flow subsumption framework (DSF) is monotone
and distributive and that sets OUT(n) contain the covered and
available for coverage DUAs at a node n [32]. As a result, by
applying an iterative algorithm, SA finds sets OUT and then
the final value of Covered(n).

We also used coverage and global DUA-DUA subsumption
data to verify our data flow subsumption approach. We could
verify the correctness of both SA and graphduas by checking
two properties associated with DUA-DUA subsumption.

The subsumption relationship is reflexive; that is, every
TR (in our case, a DUA) of a program subsumes itself.
The reflexive property was checked in 737,333 DUAs of
28,758 methods of all 18 programs, and failed for 24 methods
and 71 DUAs. The 24 failures were based on two issues
with the flow graphs: either the start node had incoming
edges or graph had self-loops (n,n). Our SATool was not
able to handle either of those special cases. SATool uses
ASM (asm.ow2.io/) to be compatible with Jaguar. Once we

removed 185 (of 28,758) methods with these characteristics,
all DUAs subsumed themselves.

The subsumption relationship implies that the subsumed
DUAs should be covered when the subsuming DUA is. For
instance, in Figure 5, whenever unconstrained DUA (0, (1,2),
i) is covered, DUAs (0,2, max) and (0, (1,2), length) should
be covered as well due to the subsumption property. We
verified the subsumption property of the unconstrained DUAs
for every executed method in the tests. It does not hold for
18 (of 14,532) executed methods. The subsumption property
was disrupted in 17 due to the occurrence of an exception
inside a try clause and one due to a synchronized clause,
which blocked the coverage of the subsuming DUAs. We
calculated the unconstrained DUAs using global DUA-DUA
subsumption, which does not address these clauses.

This verification shows that SA finds correctly the data flow
subsumption provided its assumptions hold.

C. RQ2: Data flow subsumption effectiveness

Table I shows data regarding the effectiveness of data flow
subsumption. Columns %DUA-node and %DUA-edge show
the percentage of DUAs covered if every node and edge are
covered. These use local DUA-node and DUA-edge sump-
sumption, and they can be combined provide testers with the
Covered(n) and Covered((n′,n)) sets. Column %Unc. DUAs
gives the percentage of unconstrained DUAs with respect to
the total of DUAs. The last line of the table presents the
average values of these columns.

Effectiveness data show that node and edge coverage can
lead to a significant data flow coverage, 66.1% and 78.2% on
average. However, many small methods have 100% %DUA-
node and %DUA-edge coverage (9,464 and 17,491 methods).
To assess the effectiveness on harder to test methods, Figure 6
gives the histograms of %DUA-node and %DUA-edge for
1,146 methods (out of 28,758 of all programs) with more
than 100 DUAs. The number of methods with %DUA-node
coverage below 40% is 261 and for %DUA-edge, 157. A few
methods have as many as 2,847 DUAs. So, many DUAs may
still need to be tested after achieving node and edge coverage.

About 30% of all DUAs are unconstrained (Table I). Fig-
ure 7 illustrates methods with more than 100 DUAs. Uncon-
strained DUAs represent less than 30% of all DUAs for 762
out of the 1,146 most demanding methods. Thus, DUA-DUA
subsumption in combination with DUA-node and DUA-edge
subsumption can significantly reduce the number of DUAs
to be verified, since the tester would only test unconstrained
DUAs not covered by edge or node coverage.

D. RQ3: Data flow subsumption cost

Columns t-DUA-node and t-DUA-edge in Table I give the
the number of milliseconds needed to find local DUA-node and
local DUA-edge subsumption for each program averaged over
10 trials. Note that these numbers are for subsumption analysis
only. It takes only around 22s to find the local DUA-node and
DUA-edge subsumption for the biggest program, Weka. As

8

Fig. 6. DUA coverage due to node and edge coverage for methods with more
than 100 DUAs

Fig. 7. Unconstrained DUAs for methods with more than 100 DUAs

expected by the asymptotic analysis, t-DUA-node and t-DUA-
edge values are very similar, and t-DUA-node slightly more
costly for 10 out of 18 program.

SA’s cost is dominated by the number of methods: more
methods implies more nodes, and as a consequence higher
cost. However, three programs (Codec, Compress, and Math)
did not follow the cost prediction. They have fewer methods,
but SA takes more time.

These three programs have few very complex methods with
many nodes, edges, and loops. For instance, Math has two
clone methods with 327 nodes, 463 edges, 2,197 DUAs, and
85 back edges, which implies a deep loop nesting. Weka’s
most demanding method has 187 nodes, 339 edges, 1,301
DUAs and 27 back edges.

Column t-Unc. DUAs gives the time to calculate the set
of unconstrained DUAs in the same conditions. These times
are fast considering the size of the programs: the slowest are
Math with 104s and Weka with 98s. Figure 8 plots the number

Fig. 8. Number of DUAs and time to find the unconstrained DUAs

of DUAs and the time in milliseconds for unconstrained sets
calculation to assess the relation with the number of DUAs.
For all programs, excepting Codec, Compress, and Math, t-
Unc. DUAs is a fraction of DUAs.

The effect of the methods’ complexity magnifies for un-
constrained DUAs calculation. SA is applied on each DUA’s
graphdua; thus, an increase on SA’s cost will be multiplied
by the number of DUAs. Nevertheless, even for the outlier
programs, SA finds unconstrained DUAs very efficiently.

E. Limitations and threats to validity

The Defects4J repository contains open-source programs
that are comparable to industry programs, thus reducing an
external threat. To further reduce that threat, we added Weka
because mathematical software challenged SA’s scalability.

To address internal validity, we verified SA both formally
with a proof and empirically. Our SA’s implementation relies
on Java APIs for most of the data structures used. Never-
theless, they may hide inefficiencies that we are not aware
of. Despite that, execution time is fast. We performed a
lightweight analysis to determine the data flows of a method.
Though it might miss DUAs due to aliasing, most of them
will be subsumed by the unconstrained DUAs.

Finally, the coverage implied by data flow subsumptions
represents an upper bound because they can be disrupted
by exceptions and program aborts. Because we utilized lo-
cal subsumption, the impact on DUA-node and DUA-edge
subsumptions is restricted to code inside catch clauses
since we do not know which node raised the exception. The
unconstrained DUAs, though, were calculated using global
DUA-DUA subsumption and could be impacted by exceptions.

9

VII. RELATED WORK

Santellices and Harrold’s approach finds DUAs whose cov-
erage are inferable or conditionally inferable by edge coverage
based on the concept of def-use order [15]. A DUA D(d,u,X)
is in def-use order if one of the following conditions hold: (1)
Node u cannot reach node d; (2) node d dominates node u;
or (3) node u post-dominates node d. Thus, if a DUA D is
in def-use order, node d is guaranteed to occur before node
u. Additionally, they check whether the re-definitions of X
do not occur in paths between d and u. If so, D is inferable;
otherwise, it is conditionally inferable if no re-definition of X
occurs between d and u in a particular test path.

For each node d and u of D, their technique finds the edges
that controls the execution of d and u; that is, d and u are
control-dependent on these edges. D is covered if one required
edge for d and one for u are covered. If a required edge for a
re-definition was taken, D was either not covered or possibly
covered in the test path, depending on whether D is inferable
or conditionally inferable. Santelices and Harrold’s technique
costs O(|U|), where U is the set of all DUAs, since all DUAs
have to be checked for def-use order.

We have identified three previous algorithms to find the
DUA-DUA subsumption. Marré and Bertolino suggested two
algorithms (referred to as M&B I [36] and M&B II [14], [25]);
Jiang et al. proposed another [16].

We only discuss M&B II because the paths missed in M&B
II are also missed in M&B I and both algorithms have the same
complexity. M&B II uses G∗ to find all DUAs subsumed by a
DUA D1. It first selects all paths that cover D1 by building G∗.
Then M&B II checks whether every path of G∗ also traverses
a DUA D2 by initially verifying that d2 and u2 are always
traversed in G∗. Then, to find whether every path that covers
D1 also covers D2, it checks whether no node ni from d2 and
u2 in G∗ contains a definition of X2. M&B I and M&B II
cost O(|U|2|N|) [25], [36].
G∗ is composed of three sub-graphs encompassing paths

from the start node (s) to the definition node (d1), def-clear
paths wrt X1 from d1 to node u1, and paths from u1 to the
exit node (e). However, it does not encode paths from d1 to d1
and from u1 to u1. Consider test path (0,1,3,4,1,3,5,4,1,2,6) of
Max (Figure 1) and G∗ generated for D1(3,5,rogue). M&B II
will incorrectly conclude that D1 subsumes D2(0,5,i) because
G∗ misses path (3,4,1,3) (i.e., d1 to d1) in which variable i
is re-defined. Our graphdua fixes that by adding the missing
paths d1 to d1 and u1 to u1 to G∗. Consequently, a graphdua
will have as many as five sub-graphs; each with at most the
number of nodes of the original flow graph.

Jiang et al.’s [16] algorithm for DUA-DUA subsumption is
based on the concepts of def-use order and control dependency
[15]. A DUA D2 is subsumed by D1 if and only if the
following three conditions are satisfied: (1) D1 and D2 are
in def-use order; (2) CD(d1)

⋃
CD(u1) ⊇ CD(d2)

⋃
CD(u2),

where CD(n) is the edges of which n is control-dependent; and
(3) there is a path between d1 and u1 that does not contain a

definition of X1, and there is a path between d2 and u2 that
does not contain a definition of X2.

However, Jiang et al.’s technique misses the very same paths
that G∗ misses. Consider again D1(3,5,rogue) subsuming
D2(0,5,i). Both DUAs are in def-use order because the def
node dominates the use node; and Jiang et al.’s conditions (2)
and (3) for subsumption are also valid. Nevertheless, the def-
use order does not exclude a path from node 3 to node 3 that
blocks the subsumption of (0,5,i) by (3,5,rogue). The paper
also did not discuss complexity, but it is at least O(|U|2), since
every DUA is checked against every other.

The Subsumption Algorithm (SA) efficiently calculates the
local DUA-node subsumption (≈ O(|N|)) and, as a result,
allows efficient calculation of local DUA-edge (≈ O(|N|)) and
DUA-DUA subsumption (≈ O(|U||N|)). M&B II and Jiang et
al.’s algorithm for DUA-DUA subsumption can be fixed by
adding the missing paths, but they are still more expensive.
Our experimental data suggests that the cost will increase
significantly if one uses algorithms that are quadratic in the
number of DUAs.

VIII. CONCLUSIONS

Studies indicate that data flow testing (DFT) can detect
faults missed by control flow testing (CFT) [9]. However, the
large number of of DFT test requirements (DU-associations
or DUAs) have hampered its adoption by the industry. The
subsumption relationship can identify redundant DUAs so that
testers could focus on fewer DUAs that will still lead to high
data flow coverage [14], [15].

Reliably identifying subsumption for data flow, though, is a
difficult problem, whose early solutions have subtle flaws and
inefficient algorithms. We tackled the data flow subsumption
problem by modeling it as data flow analysis framework.
In doing so, we were able to solve the local DUA-node
subsumption with cost ≈ O(|N|), where |N| is the number of
nodes in the program’s flow graph. Using the local DUA-node
subsumption, one can find other data-flow (DUA-node, DUA-
edge, and DUA-DUA) subsumptions at substantially reduced
costs. Our experimental data suggest that DFT costs can be
reduced significantly by combining data flow subsumptions.

We have several plans for extending this research. One
question is whether test sets created for unconstratined DUAs
detect as many faults as test sets created for all DUAs.
This question gets at the heart of the value of test criteria
and subsumption, and could be affected by infeasible DUAs
and interrupted executions, which we identify in this paper.
We theorize that DUA relationships inside try and catch
clauses can be explored with local DUA-DUA subsumption
and special flow graphs. Comparison of our approach with
random testing could add to the benefit of our approach hence
we plan it as future work. Finally, spectrum-based fault local-
ization techniques can benefit from data flow subsumptions to
select relevant spectra.

ACKNOWLEDGMENT

Marcos Lordello Chaim was supported by grant #2019/
21763-9, São Paulo Research Foundation (FAPESP).

10

REFERENCES

[1] J. J. Chilenski and S. P. Miller, “Applicability of modified condition/deci-
sion coverage to software testing,” Software Engineering Journal, vol. 9,
no. 5, pp. 193–200, 1994.

[2] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649–678, 2011.

[3] J. Offutt and A. Abdurazik, “Generating tests from UML specifications,”
in Proceedings of the 2nd International Conference on The Unified
Modeling Language: Beyond the Standard, ser. UML’99. Berlin,
Heidelberg: Springer-Verlag, 1999, p. 416–429.

[4] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage
and adequacy,” ACM Comput. Surv., vol. 29, no. 4, p. 366–427, Dec.
1997. [Online]. Available: https://doi.org/10.1145/267580.267590

[5] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing strategies:
A survey,” Software Testing, Verification, and Reliability, vol. 15, no. 3,
pp. 167–199, 2005. [Online]. Available: https://doi.org/10.1002/stvr.319

[6] P. Ammann and J. Offutt, Introduction to Software Testing, 2nd ed.
Cambridge, UK: Cambridge University Press, 2017.

[7] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments on the
effectiveness of dataflow- and controlflow-based test adequacy criteria,”
in 16th International Conference on Software Engineering, ser. ICSE,
1994, pp. 191–200.

[8] P. G. Frankl and O. Iakounenko, “Further empirical studies of test
effectiveness,” in Proc. of the ACM SIGSOFT Foundations of Software
Engineering Conference, ser. FSE ’98, 1998, pp. 153–162.

[9] H. Hemmati, “How effective are code coverage criteria?” in Interna-
tional Conference on Software Quality. IEEE, 2015, pp. 151–156.

[10] T.-B. Dao and E. Shibayama, “Security sensitive data flow coverage cri-
terion for automatic security testing of web applications,” in Engineering
Secure Software and Systems, ser. ESSoS, 2011, pp. 101–113.

[11] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold, “Lightweight
fault-localization using multiple coverage types,” in Proc. of the 31st
International Conference on Software Engineering, ser. ICSE, 2009, pp.
56–66.

[12] H. L. Ribeiro, R. P. A. de Araujo, M. L. Chaim, H. A. de Souza,
and F. Kon, “Evaluating data-flow coverage in spectrum-based fault
localization,” in 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM 2019, Porto de Galin-
has, Recife, Brazil, September 19-20, 2019. IEEE, 2019, pp. 1–11.

[13] S. Rapps and E. Weyuker, “Selecting software test data using data flow
information,” IEEE Transactions on Software Engineering, vol. 11, no. 4,
pp. 367–375, Apr. 1985.

[14] M. Marré and A. Bertolino, “Using spanning sets for coverage testing,”
IEEE Transactions on Software Engineering, vol. 29, no. 11, pp. 974–
984, 2003.

[15] R. Santelices and M. J. Harrold, “Efficiently monitoring data-flow test
coverage,” in 22nd IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE, 2007, pp. 343–352.

[16] S. Jiang, J. Chen, Y. Zhang, J. Qian, R. Wang, and M. Xue, “Evolution-
ary approach to generating test data for data flow test,” IET Software,
vol. 12, no. 4, pp. 318–323, 2018.

[17] M. S. Hecht, Flow analysis of computer programs. New York: Elsevier
North-Holland, 1977.

[18] J. B. Kam and J. D. Ullman, “Monotone data flow frameworks,” Acta
Informatica, vol. 7, pp. 305–317, 1977.

[19] M. L. Chaim and R. P. A. de Araujo, “An efficient bitwise algorithm
for intra-procedural data-flow testing coverage,” Information Processing
Letters, vol. 113, no. 8, pp. 293–300, 2013.

[20] J. Laski and B. Korel, “A data flow oriented program testing strategy,”
IEEE Transactions on Software Engineering, vol. SE-9, no. 3, pp. 347–
354, 1983.

[21] S. C. Ntafos, “On required element testing,” IEEE Transactions on
Software Engineering, vol. 10, no. 6, pp. 795–803, 1984.

[22] H. Ural and B. Yang, “A structural test selection criterion,” Information
Processing Letters, vol. 28, pp. 157–163, 1988.

[23] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil, “A
comparison of data flow path selection criteria,” in Proceedings of
the 8th International Conference on Software Engineering, ser. ICSE
’85. Washington, DC, USA: IEEE Computer Society Press, 1985, p.
244–251.

[24] P. G. Frankl and E. J. Weyuker, “An applicable family of data flow
testing criteria,” IEEE Transactions on Software Engineering, vol. 14,
no. 10, pp. 1483–1498, Oct. 1988.

[25] M. Marré, “Program Flow Analysis for Reducing and Estimating the
Cost of Test Coverage Criteria,” Ph.D. dissertation, Dep. de Computa-
cion, FCEyN – Universidad de Buenos Aires, Argentina, 1997.

[26] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical
minimal sets of mutants,” in 7th IEEE International Conference on
Software Testing, Verification, and Validation (ICST), Cleveland, OH,
March 2014, pp. 21–30.

[27] B. Kurtz, P. Ammann, M. E. Delamaro, J. Offutt, and L. Deng, “Mutant
subsumption graphs,” in Tenth IEEE Workshop on Mutation Analysis
(Mutation), Cleveland, OH, March 2014.

[28] B. Kurtz, P. Ammann, and J. Offutt, “Static analysis of mutant subsump-
tion,” in Eleventh IEEE Workshop on Mutation Analysis (Mutation),
Graz, Austria, April 2015.

[29] B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. Kurtz, and
N. Gökće, “Analyzing the validity of selective mutation with dominator
mutants,” in 24th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), Seattle Washington, USA,
November 2016.

[30] B. Kurtz, P. Ammann, J. Offutt, and M. Kurtz, “Are we there yet?
How redundant and equivalent mutants affect determination of test com-
pleteness,” in Twelfth IEEE Workshop on Mutation Analysis (Mutation),
Chicago Illinois, USA, April 2016.

[31] S. Horwitz, A. Demers, and T. Teitelbaum, “An efficient general iterative
algorithm for dataflow analysis,” Acta Informatica, vol. 24, pp. 679–694,
1987.

[32] M. L. Chaim, K. Baral, and J. Offutt, “A data flow analysis framework
for data flow subsumption,” Tech. Rep., sep 2020. [Online]. Available:
https://github.com/icst2021satool/techreport

[33] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: principles,
techniques, and tools, 2nd ed. Boston: Pearson Addison-Wesley, 2007.

[34] D. E. Knuth, “An empirical study of FORTRAN programs,” Software:
Practice and Experience, vol. 1, no. 2, pp. 105–133, 1971.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.
4380010203

[35] B. G. Ryder and M. C. Paull, “Elimination algorithms for data flow
analysis,” ACM Computing Surveys, vol. 18, no. 3, p. 277–316, Sep.
1986. [Online]. Available: https://doi.org/10.1145/27632.27649

[36] M. Marré and A. Bertolino, “Unconstrained DUAs and their use in
achieving all-uses coverage,” in Proceedings of the International Sympo-
sium on Software Testing and Analysis. New York, USA: ACM Press,
1996, pp. 147–157.

[37] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for Java programs,” in Interna-
tional Symposium on Software Testing and Analysis, ISSTA, July 2014,
pp. 437–440.

[38] H. L. Ribeiro, H. A. de Souza, R. P. A. de Araujo, M. L. Chaim, and
F. Kon, “Jaguar: A spectrum-based fault localization tool for real-world
software,” in 11th IEEE International Conference on Software Testing,
Verification and Validation, ICST 2018, Västerås, Sweden, April 9-13,
2018. IEEE Computer Society, 2018, pp. 404–409.

11

