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Abstract— This paper presents a method for robot and land-
marks 2D localization, in man made environments, taking profit
of scene planes. The method uses bearing-only measurements
that are robustly matched in three views. In our experiments
we obtain them from vertical lines corresponding to natural
landmarks. With these three view line-matches a trifocal tensor
can be computed. This tensor contains the three views geometry
and is used to estimate the aforementioned localization. As it
is very usual to find a planar surface, we use the homography
corresponding to that plane to obtain the tensor with one match
less than the general case method. This implies lower computa-
tional complexity, mainly when trying a robust estimation, where
we see a reduction in the number of iterations needed. Another
advantage of obtaining an homography during the process is that
it can help to automatically detect singular situations, such us
totally planar scenes. It is shown that our proposal performs
similarly to the general case method in a general scenario and
better in case that we have some dominant plane in the scene. This
paper includes simulated results proving this, as well as examples
with real images from conventional and omnidirectional cameras.

Index Terms - 1D trifocal tensor, scene planes, bearing-only

data, localization, SLAM initialization.

I. INTRODUCTION

Most robot autonomous tasks can not be acomplished

just using the odometry information, due to its well-known

limitations. Laser range and vision sensors are mostly used to

provide the robot with scene information to carry out those

autonomous tasks. Mobile robots work many times on planar

surfaces. To define the scene or the situation in this case, i.e.

to be localized, three motion parameters for a robot location

and two more for each feature are needed. This is the task we

are dealing with in this work (Fig.1).

In the last years, many Simultaneous Localization and

Mapping (SLAM) algorithms have been proposed as a good

method to achieve those tasks in unknown scenes, using

different sensors, e.g. [1]. We are going to focus in the case

of using bearing-only data. In this case, the SLAM methods

can bee seen as an iterative process that need to be initial-

ized somehow, because just with one bearing-measurements

acquisition we can not directly estimate the distance for the

observed landmarks. In case of planar motion this initialization

can be done with linear methods using three different initial

acquisitions, as explained in [2]. When working with images,

the projection in a 1D virtual retina of vertical landmarks in
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the scene can be treated as bearing-only data. Similarly in

omnidirectional images for the radial lines, which came from

projected scene vertical landmarks [3]. As it is known, typi-

cally three acquisitions from different positions of the bearing-

sensor are needed to recover robot and landmark localization.

The trifocal tensor gives a closed formulation to relate those

three views. Recently a work has appeared proposing a way

to avoid the need of these three first acquisitions. It is based

in multi-hypotesis ideas [4], with good performance for the

SLAM, but it increases a little the complexity of the problem

and they still need several acquisitions until they have a defined

estimation of landmarks position.

The 1D trifocal tensor was previously presented [5], to-

gether with an algorithm to compute motion from it in a closed

form. The 1D trifocal tensor has also been used for calibration

of 1D cameras [6]. Also in its application to omnidirectional

cameras we can find some previous related works, about

localization [3] and about radial distortion correction [7]. This

tensor can be computed linearly from seven matches although

with calibrated cameras five matches are enough [5]. The use

of constraints imposed by the scene can reduce the number of

necessary matches. Here we study the situation with a plane

available in the scene. These ideas have been used in case of

general 3D scenes, following the well known two view plane-

parallax constructions and extending it to more views, chapters

12 an 15 in [8]. The trifocal tensor and multi-view constraints

based on homographies were studied in [9].

In this paper, we suppose a scene that contains at least one

plane, more exactly three coplanar feature-matches, which is

quite usual when a robot moves on man-made environments.

We show how to estimate the 1D tensor from only four

matches and evaluate the robot and landmarks localization

obtained from that tensor. One goal of this work is to show a

way to reduce the computational cost of previous methods

aiming the same, by taking profit of the existence of a

plane in the scene. This may be very useful in real time

applications. Another advantage of obtaining an homography

during the process is that it can help to automatically detect

singular situations, such us totally planar scenes. We proof the

good performance of the proposal with experiments both with

simulated and real data. There are tests with pinhole cameras,

where we use the projection of vertical landmarks in the scene,

as well as with omnidirectional images, with the advantage in

this case that the camera calibration is not needed.



II. PLANAR TRIFOCAL TENSOR
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Fig. 1. The goal is to obtain the relative localization of the robot
(θ′ , t′ = [t′x, t′z ]; θ′′, t′′ = [t′′x, t′′z ]) and the position of the landmarks (x),
from the three view matches (u u

′
u
′′) of natural landmarks.

The bearing-only data obtained by a robot moving on

a planar surface can be converted to measurements in 1D

perspective cameras using a projective formulation. Thus, we

can easily convert a bearing measurement α from a scene

feature to its projective formulation in a 1D virtual retina

as u = (tan α, 1)T or u = (sin α, cos α)T , which are

projectively equivalent. In our case, the bearing-only data is

particularized to vertical lines detected in images. We can

consider only the x line coordinate in the image is relevant.

Therefore they can be treated as elements of the P1 projective

space and so we are in the same 1D case. With three views

from different positions a trifocal tensor can be linearly com-

puted, and robot and landmarks localization can be obtained

(Fig. 1).

Let us name the homogeneous representation of a feature

in P2 space as x = [x1, x2, x3]
T and its homogeneous

representation in the P1 projective space as u = [u1, u2]
T .

This projection to P1 projective space can be expressed by a

2 × 3 matrix M in each image, in such a way that

λu = Mx; λ′
u
′ = M

′
x; λ′′

u
′′ = M

′′
x (1)

where λ, λ′ and λ′′ are the respective scale factors.

Let us suppose all the scene features in a common reference

frame placed in the first robot location. Then, the projection

matrixes relating the observed features in the scene and in the

corresponding image are M = K[I|0], M
′ = K[R′|t′] and

M
′′ = K[R′′|t′′], for the first, second and third robot locations

respectively. These matrixes are composed by internal and

external parameters. The internal ones are enclosed in the

calibration matrix K =
[

f c0
0 1

]

, where f is the focal length

in pixels and c0 is the position of the principal point. In

case of omnidirectional images, the calibration matrix used is

the identity. Supposing squared pixels, the only parameter to

calibrate is the center of projection, what can be automatically

done from the radial lines.

The external parameters are the translations t
′ = [t′x, t′z]

T ,

t
′′ = [t′′x, t′′z ]T and rotations R

′ =
[

cosθ′ sinθ′

−sinθ′ cosθ′

]

,

R
′′ =

[

cosθ′′ sinθ′′

−sinθ′′ cosθ′′

]

made by the sensor from the

second and third position in relation to the first (Fig. 1).

The projection equations (1) from the three locations can

be written in the following way

[

M u 0 0
M

′ 0 u
′ 0

M
′′ 0 0 u

′′

]

[x,−λ,−λ′,−λ′′]T = 0. (2)

As neither x nor the scale factors can be null, it originates
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that can be written as the trifocal constraint for 3 views [6]:
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This can be developed as
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(5)

where Tijk (i, j, k = 1, 2) are the eight elements of the

2 × 2 × 2 trifocal tensor whose components are the 3 × 3
minors of the 6 × 3 matrix [MM

′
M

′′]T , in such a way that

to obtain Tijk = [̄i j̄ k̄] we take the īth row of M, the j̄th row

of M
′ and the k̄th row of M

′′, meaning ·̄ a mapping from

[1,2] to [2,-1] (1̄ would mean 2nd row and 2̄ would mean 1st

row with sign changed).

Being v the number of views, and l the number of bearing-

only measurements we have vl equations. We have 3 motion

parameters to compute for each robot location (except for the

first one, because we locate it in the origin) and 2 parameters

for each landmark. So the number of parameters to estimate is

3(v − 1) + 2l− 1 (−1 because we can only get the results up

to a scale factor). If the number of images is 2, the problem

is unsolvable, even with infinite number of landmarks (vl ≥
3v− 3+2l− 1). The minimum number of views necessary to

solve this problem is 3, with at least 5 measurements.

The 1D trifocal tensor has 8 parameters up to a scale, so it

can be estimated from 7 corresponding triplets. With calibrated

cameras the following additional constraints apply [5]:

−T111 + T122 + T212 + T221 = 0
T112 + T121 + T211 − T222 = 0,

(6)

then only five three-view matches are needed.

Using five matches and the calibration conditions is com-

putationally more efficient and it gives better results in motion

estimation than the classical seven degrees of freedom tensor

computed from seven matches [10]. The computation of the

trifocal tensor can be carried out as explained above using

Singular Value Decomposition (SVD). With more matches

than the minimal case, that procedure would give the least

squares solution, which assumes that all the measures could

be interpreted with the same model. This is very sensitive to

outliers, so we need robust estimation methods to avoid them.

In our work we have chosen ransac [11], which makes a search

in the space of solutions using random subsets of minimum

number of matches.



III. SCENE PLANE AND THE 1D TRIFOCAL TENSOR

When the robot moves in man-made environments, many

times there are planes in the scene which can be used in the

computation of the trifocal tensor, then the number of matches

needed may be reduced. This idea has been applied in the case

of three 3D views, with the 2D trifocal tensor, e.g. [12] [9]. In

this section, we study that situation for the 1D trifocal tensor.

It is shown in the literature of multiple view geometry [13]

that there exist a relation between the projections of a line in

three images, the tensor T defined between the three views and

two homographies H21 (from image 1 to 2) and H31 (from

image 1 to 3) corresponding to a transformation through the

same plane but between different couple of images. There have

been developed for line features in a 3D scene. We transfer

those constraints to point features in a 2D scene with 1D

projections. These new constraints are obtained as follows.

If we have a point projection in three views, u,u′ and u′′,

and 2 homographies, H21 and H31, the following relations are

known for any point in the plane of the scene:

u′ = H21u , u′′ = H31u (7)

On the other hand, the constraint imposed by the 1D trifocal

tensor (5) can be reordered as,

u1(T111u′

1
u′′

1
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u′′
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2
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1
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2
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2
)+

u2(T211u′

1
u′′

1
+ T212u′

1
u′′

2
+ T221u′

2
u′′

1
+ T222u′

2
u′′

2
) = 0.

If we name T1 =
[

T111 T112

T121 T122

]

and T2 =
[

T211 T212

T221 T222

]

,

this equation can be written as [u1u2]

[

u′T T1u′′

u′T T2u′′

]

= 0.

Therefore, we have the following equality up to a scale (∼=)
[

u1

u2

]

∼=

[

u′T T2u′′

−u′T T1u′′

]

, and substituting with (7) we get

[

u1

u2

]

∼=

[

uT HT
21

T2H31u

−uT HT
21

T1H31u

]

. (8)

From (8) we obtain 4 additional constraints for the 1D tensor:

• First, equation (8) must be certain for any point u. So

let us consider that u could be in the form u = [0 u2]
T

or u = [u1 0]T . Replacing in that equation with u in these

two special forms and developing the expressions we get

two new constraints (to simplify the expressions, let us name

B1 = HT
21

T2H31 and B2 = −HT
21

T1H31 ):

B1(2, 2) = 0
B2(1, 1) = 0

(9)

where Bn(a, b) means (row a, column b) of the matrix Bn.

• Moreover the scale factor must be the same for both u

components in (8), therefore
uT HT

21
T2H31u

u1

=
−uT HT

21
T1H31u

u2

must be true. Developing this expression we get the other two

new constraints:

B1(1, 1) = B2(2, 1) + B2(1, 2)
B2(2, 2) = B1(2, 1) + B1(1, 2).

(10)

It is known that 3 matched features at least are needed

to compute 1D homographies from visual data in two 1D

projections [14]. The corresponding coordinates in the pro-

jective space P1 of the matched features in first and second

images (u = [u1, u2]
T and u

′ = [u′

1
, u′

2
]T ) are related

through the homography H21:
[

u′

1

u′

2

]

= H21

[

u1

u2

]

, with

H21 =
[

h11 h12

h21 h22

]

, what provides one equation to

solve H21:

[ u1u′

2
u2u′

2
u1u′

1
u2u′

1 ]





h11

h12

h21

h22



 = 0.

With the coordinates of at least three bearing-only mea-

surements, in our case three vertical lines, we can construct

a 3x4 A matrix. The homography solution corresponds to the

eigenvector associated to the least eigenvalue of the A
T
A

matrix and it can be solved by singular value decomposition

of matrix A. Similarly to obtain H31.

The coplanarity condition reduces in one the minimum

number of matched features needed to compute the tensor.

Therefore, the tensor, in the calibrated case, can be computed

from 4 matched features, three of them being coplanar in the

scene. This tensor gives a general constraint for all observed

landmarks from the three robot positions, independently of its

location in the scene. This reduction of the minimum number

of matches is specially convenient due to the robust technique

used. In this case instead of doing a random search in a 5

degrees of freedom (d.o.f.) space of solutions, we have to do a

search in a 3 d.o.f. space, to robustly estimate the homography

and the features belonging to it, plus a second search in a

1 d.o.f. space of solutions, to estimate the tensor with the

homography plus a feature match which is out of the plane.

For instance, let us suppose a situation with 40% of outliers.

If we execute the algorithm for the 5 matches tensor, the ransac

algorithm needs to perform 57 iterations to get a result with

99% probability of being correct. On the other hand, if we

choose the 4 matches tensor estimation, the ransac algorithm

will just need 19 (for homographies) + 6 (for tensor) iterations

for the same level of confidence. To sum up, around twice

more time required for the classical way of estimating the

tensor. However, we should notice that this big difference is

realistic only in the case that the plane is dominant in the

scene. Otherwise we should consider higher level of outliers

for the plane based method than for the general ones. Then,

the outliers would be not only the wrong matches but also

many matches which do not belong to the plane. If we suppose

a 50% of outliers in that search, the number of iterations

obtained (35+7 iterations) would still be lower than the 5

matches tensor, with the advantage that the estimation of the

homography can give us some clue about singular situations

(e.g. when all the scene is explained by it because it is totally

planar).

IV. ROBOT AND LANDMARK LOCALIZATION

When the motion is performed on a plane, 6 parameters,

up to a scale factor for translation, should be computed:

θ′, t′, θ′′, t′ (Fig. 1). The algorithm we use to compute motion

recovers the epipoles with a technique proposed for the 3D

case [15], also applied for the 2D case in [2]. We have also

used it in a general scene with omnidirectional images [3].



Here we explain a summary of this method to get the

localization parameters from the 1D trifocal tensor:

• The directions of translation are given by the epipoles and

the rotations between robot positions are obtained by trigono-

metric relations between the epipoles. To get the epipoles,

we first obtain the intrinsic homographies of the tensor,

corresponding to the X and Z axis of the images. From these

homographies, we compute the corresponding homologies for

the tree images. The epipoles are the eigenvectors mapped to

themselves through these homologies.

• Once the rotation and translation between the cameras

have been obtained, the landmark localization is computed

solving the system of the 3 equations (two are enough) which

project them in P1 (1) in the three images.

The method provides two solutions for the motion parame-

ters, defined up to a scale for the translations and landmarks

location. This scale and ambiguity problem can be solved

easily with some extra information. It can be obtained for

example from odometry or from other previous knowledge of

the scene.

V. EXPERIMENTAL RESULTS

In this section we show several experiments with simu-

lated data to show the trifocal tensor performance in motion

computation, when estimated with 5 matches or with a scene

plane and 4 matches. There are shown also experiments with

different types of real images, to show the performance in

robot localization and landmarks reconstruction.

A. Simulation Experiments

First, some tests were run with simulated data to establish

the performance of motion estimation through the trifocal

tensor. We implemented a simulator of 2D scenes which are

projected into 1D virtual cameras with field of view of 53◦ and

1024 pixels. We present the results for two different simulated

movements, MovA and MovB. The first one could fit a com-

mon multi-robot configuration, and the second one represents

a typical situation with a mobile robot going forward. In Fig. 2

we can see the position of the cameras, its field of view and

the localization of the features in each movement.
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Fig. 2. MovA and MovB. Two simulated scenarios, showing landmarks and
3 camera positions with their corresponding field of view.

Measurement errors were simulated as gaussian random

noise (of zero mean and standard deviations varying from 0 to

1 pixel) added to features image coordinates. Each experiment

was repeated 100 times. The evaluation parameters shown for
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Fig. 3. Dominant Plane case: 20 matches in the plane and 10 out of it.
Trifocal Tensor estimated with 5 and with 4 matches (100 executions for
each case with different random matches). RMS error in rotation, translation
direction and reprojection for MovA (left) and MovB(right) of Fig. 2.

each of them are: the RMS (root-mean-square) error in the

computation of the rotation angles (θ′ and θ′′), the RMS error

in the directions of translation (t′ and t′′) and the average RMS

features reprojection error in the three images.

We took into account that there is a plane in the scene,

supposing the features that belong to the plane are known. In

this situation, we can estimate the tensor with 1 match less than

in a general case, as explained in Section III. We considered

a plane parallel to the first image, placed 20 units ahead the

origin, in both scenarios (Fig.2).

We evaluated the performance in the localization with the

two ways to estimate the tensor, with 4 matches or with 5.

There were different cases of study, depending how many

matched features belong to the plane: most of them in the

plane (dominant plane in the scene), equally distributed (no

dominant plane) or all of them in the plane.

Simulating a general scenario (when there is no dominant

plane, but still a plane exists), we obtained very similar results

for both tensors. In these simulations we generated 10 matches

on the plane and 20 or 30 out of it. In all the cases errors

were similar between methods, an example is shown in Fig. 4.

However, when the plane is the predominant element in the

scene (most matched features are on it), we found some
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Fig. 4. Trifocal tensor estimated with 5 and with 4 matches (100 executions
for each case with different random matches). RMS error in rotation, trans-
lation direction and reprojection for MovA of Fig. 2. Left: General case, 10
matches in the plane and 20 out of it (no dominant plane). Right: All matches

in the plane, singular situation where the tensor does not exist.

advantages in the use of the 4 matches tensor. In Fig. 3 we can

see the comparison between results from the tensor using plane

constraints (with 4 matches, tensor4) and from the general

tensor (with 5 matches, tensor5). In these simulations, we

generated 20 random matches on the plane and 10 out of it.

We can observe for MovA that tensor4 behaves better than

tensor5, specially when the noise increases. Computing this

4 matches tensor has another advantage, as the intermediate

estimation of the homography can give us a clue about being

in singular situations. For example, if the whole scene can be

explained with the homography (all the matches fit it), we have

a planar scene and then there is no sense to continue with the

tensor estimation, as it does not exists in those cases. We also

tried the localization estimation if all the matches belong to

the plane, and the expected bad results can be seen in Fig. 4.

B. Real images Experiments

We show two examples with real images, one with conven-

tional and other with omnidirectional cameras. In the first one

we want to show the results with a scene where the plane

is dominant. In the second one, when it is not. The scale

factor was solved using data from the ground truth (only one

known distance is necessary). The line matching is not the

subject of study here, we used methods developed in previous

works, both for conventional images [10] and omnidirectional

ones [3]. They are based in nearest neighbor search over the

descriptors of the region around each line, and in checking

some topological consistence similarly to the work in [16].

1) Using conventional cameras (1R): In this experiment

we used a conventional camera with known calibration matrix.

We automatically extracted and matched vertical lines in three

views. These 3 images with the line matches (the ones used to

estimate the plane are in red) and a scheme of these features

reconstruction is shown in Fig. 5. In this case, as the plane

is dominant in the scene, it is possible to estimate robustly

which features belong to a plane. The tables at the bottom of

the same figure contain the localization errors: rotations (θ′,

θ′′) and direction of translations (t′, t′′), as well as the feature

reconstruction errors: in the image reprojection and in the

2D reconstruction in the scene. The ground truth motion for

this experiment was obtained with the aid of Photomodeler

software, where a set of points are manually given to get a

photogrammetric reconstruction. Similarly to the simulation

results, we observe better performance in the results from

the tensor computed through a homography (TT4). We made

different tries using more or less matches from out of the

plane. As could be expected, the more we decreased those set

of matches which do not belong to the plane, the more the

errors with the TT5 increased.
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TT4 0.17o 0.5o 2.9o 3.4o 0.6 pix.(0.8) 0.5 m. 1.5 m.

Fig. 5. Experiment 1R. Top & Middle-left: Outdoor real images with line
robust matches. Coplanar lines [1..14] marked in red. Middle-right: Scene
scheme with robot locations and landmarks reconstruction obtained through
the classical tensor (TT5 in pink o), through the tensor with an homography
(TT4 in red *) and landmarks location obtained from the ground truth motion
(obtained with Photomodeller, in blue +). Bottom: robot and landmarks
localization errors.

2) Using omnidirectional cameras (2R): Next we show

an example with omnidirectional images. In this case the



calibration of the camera is not necessary. If we suppose

squared pixels, it is only required the center of projection. It

does not coincide with the center of the image, but we estimate

it automatically from the radial lines [3]. The trifocal tensor

for this kind of image is also robustly computed from the

projected radial lines (vertical landmarks of the scene). With

this kind of images, the segmentation of the lines belonging to

the same plane in the three views is a more difficult task. This

is due to the wide field of view from the scene, what can make

that many planes are visible all the time. Also the number

of lines belonging to one specific plane may be too small,

preventing from their automatic detection. In this cases, the

homography/plane inliers are obtained using a priori knowl-

edge about the scene. This problem has to be deeply studied in

future works. In this experiment we selected them manually. In

Fig. 6 the three views used are shown with the matched lines.

The lines used to estimate an homography are marked in red.

There we see also the scheme of the reconstruction, where

the good performance of the proposal can be appreciated.

Results from both tensors, as expected from the simulations,

are quite similar, with the before mentioned advantages of the

intermediate estimation of an homography. The errors in the

rotation (θ′, θ′′) and translation direction (t′, t′′) estimation

are shown in a table at the bottom of the figure, together with

the features reconstruction errors: image reprojection and 2D

reconstruction in the scene. Here the ground truth motion was

obtained with a metric tape and a goniometer.
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rotation transl. dir. mean image mean mean

θ′ θ′′ t′ t′′ repr. err (std) 2D x 2D z

TT5 0.8o 1.8o 1.5o 6.3o 0.2o(0.3) 0.15 m. 0.16 m.

TT4 0.96o 1.8o 2.05o 6.7o 0.3o(0.2) 0.15 m. 0.15 m.

Fig. 6. Experiment 2R. Top & Middle-left: Indoor omnidirectional images
with robust line matches. Coplanar lines [1..5] marked in red. Middle-right:
Scene scheme with robot locations and landmarks reconstruction obtained
through the classical tensor (TT5 in pink o), through the tensor with an
homography (TT4 in red *) and landmarks location obtained from the ground
truth motion (measured with a metric tape, in blue +). Bottom: robot and
landmarks localization errors.

VI. CONCLUSIONS

In this paper we have presented a method to recover robot

and landmark localization through a trifocal tensor. It is a

low complexity (linear) method that takes profit of planes in

the scene. It uses bearing-only measurements, e.g. obtained

from conventional or omnidirectional images. An important

advantage is that it can be estimated with only four matches,

when three of them are located in a plane of the scene. This

makes the method computationally less expensive than other

similar ones and suitable for real time applications. There is no

loss in performance in general cases, and it even gives better

results when there is a dominant plane in the scene. Also notice

the possibility of detect singular situations automatically in the

intermediate step of homography estimation. The simulation

and real images experiments show the good performance

of our proposal, with quite low errors in localization and

reconstruction, proving its suitability for robotic tasks, such as

bearing only SLAM initialization or multi-robot localization.
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tion based on homographies. Journal of Robotic Systems, 22(10):569–
581, 2005.

[15] A. Shashua and M. Werman. Trilinearity of three perspective views
and its associate tensor. In Proc. of the International Conference on

Computer Vision (ICCV), pages 920–925, June 1995.
[16] H. Bay, V. Ferrari, and L. Van Gool. Wide-baseline stereo matching

with line segments. In Proc. of the IEEE Conf. on Computer Vision and

Pattern Recognition, volume I, June 2005.


